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Brain tumors are a group of diseases characterized by abnormal growths of cells in the brain 

that can cause severe neurological symptoms. In recent years, the advent of artificial intelligence 

(AI) techniques has shown great promise in enhancing brain tumor detection. This survey 

research discusses methods and techniques used for AI-based brain tumor detection. Brain 

tumors pose significant health risks, necessitating accurate and timely detection for effective 

treatment. The study defines brain tumors and emphasizes the need for precise detection 

methods due to tumor variations. Biomarkers associated with brain tumors are investigated, 

highlighting their potential as diagnostic and prognostic indicators. The utilization of deep 

learning (DL) models, including Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and 3D CNNs, is examined, providing a comparative analysis of their 

strengths and limitations. The importance of datasets, such as TCIA, BRATS, and ISLES, is 

discussed in training and evaluating AI models for brain tumor detection. This survey aims to 

contribute to the understanding and progress of AI-based brain tumor detection along with the 

comparison of some deep learning models, providing insights for researchers and healthcare 

professionals working towards improving patient outcomes.  
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1. INTRODUCTION 

The brain serves as the main control center of the body and manages all of its activities, 

including movement, sensation, perception, and cognitive processes. The brain consists of 

three primary components: the cerebrum, and cerebellum brainstem. The largest par, and is 

the cerebrum which does many important things like controlling our senses and movements 

and more complex things like thinking, remembering, and making decisions. The 

cerebellum is at the back of the brain and helps us to move and stay balanced [1]. The 

brainstem is responsible for connecting the brain to the spinal cord and controlling essential 

functions like breathing, a heartbeat rate, and the level of blood pressure, making it a vital 
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component of the central nervous system (CNS). Brain tumor (BT) can impact any region 

of the brain, depending on its location and type. A study published in the Journal of Neuro-

Oncology stated that the frontal lobe is the most common location for gliomas, with the 

temporal and parietal lobes following closely behind in terms of frequency [2]. Tumors 

located in the frontal lobe can affect personality, judgment, and decision-making, while 

tumors in the temporal lobe can affect memory and speech.  

Tumors in the parietal lobe can affect sensation and perception, while tumors in the occipital 

lobe can affect vision [3]. Another study published in the Journal of Clinical Neuroscience 

in 2020 found that BT situated in the back part of the skull, known as the posterior fossa, 

involving the cerebellum and brainstem, carries a greater chance of neurological 

impairments and inferior results as compared to tumors located in other regions of the brain 

[4]. Brain tumors can have varying effects on the brain, which depend on their size and 

location. They can cause several symptoms including headaches, seizures, difficulty 

speaking, weakness or numbness in the limbs, and changes in personality or behavior [5]. 

Brain tumor diagnosis and treatment can be complicated because the symptoms depend on 

where and how big the tumor is. Brain tumors can cause headaches, seizures, personality 

changes, and even loss of motor function or speech impairment, depending on where the 

tumor is located. Brain tumors can also cause other complications, such as hydrocephalus, 

increased intracranial pressure, and cerebral edema [6]. BT treatment depends on many 

factors, including the kind of tumor that the patient has, its location, size, grade, and overall 

health status. These factors are critical in determining the most appropriate course of 

treatment. Surgery, radiation therapy, chemotherapy, and targeted therapy are the most 

widely used methods for the treatment of BT. Surgery is usually the primary option to 

remove as much of the tumor as possible, followed by radiation or chemotherapy to 

eliminate any remaining tumor cells [7]. Targeted therapy is a recent therapeutic approach 

that employs drugs to hinder particular molecular pathways involved in tumor growth and 

survival.  

Despite the significant progress in the oncology of brain tumors, they continue to pose a 

substantial challenge for patients, caregivers, and healthcare providers. Multiple factors, 

including the tumor's grade and subtype, location, and the age of the patient, can impact the 

prognosis of individuals with brain tumors. High-grade tumors are known for their 

aggressive behavior and difficulty in treatment, while low-grade tumors generally have a 

more favorable prognosis. However, even low-grade tumors may require long-term 

monitoring and treatment. Moreover, the side effects of treatment can be significant, such 

as cognitive impairment, fatigue, and neuropathy, which can greatly affect the patient's 

health [8]. The integration of Artificial Intelligence (AI) and Machine learning (ML) in brain 

tumor research and clinical practice can revolutionize the field of neuro-oncology and 

improve patient outcomes [9]. AI can provide more accurate and efficient diagnosis and 

treatment planning, reduce the risk of human error and bias, and enable personalized 

medicine based on individual patient characteristics and tumor biology. However, several 

challenges and limitations also exist, such as the need for large and diverse datasets, the risk 
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of over-reliance on technology, and the ethical and legal implications of AI [10]. The process 

of BT detection is shown in Figure 1. The presented figure illustrates a systematic 

methodology involving lesion enhancement, segmentation, and subsequent classification 

[11]. Recent advancements in medical imaging, particularly in the domain of brain tumor 

detection, have undergone a revolutionary transformation with the infusion of machine 

learning (ML) techniques.  

 

 
Figure 1. Process of Brain Tumor Detection [11] 

 

2. BRAIN TUMOR  

A medical condition that is marked by the abnormal growth of cells in the brain or 

surrounding areas. They can be categorized as primary tumors that originate in the brain or 

metastatic tumors that originate elsewhere in the body and spread to the brain.  

 

2.1 PRIMARY BT   

These are a type of tumors that originate within the brain and are classified into two main 

categories: gliomas and non-gliomas. Gliomas constitute the majority of the primary BT, 

accounting for roughly 80% of all cases. These tumors arise from glial cells, which are 

responsible for protecting and supporting neurons in the brain [5]. Various subtypes of 

gliomas exist, such as astrocytomas, oligodendrogliomas, and ependymomas, each 

possessing unique attributes and prognoses.   

Non-gliomas refer to primary brain tumors that originate from different cell types within the 

brain, including meningiomas, pituitary adenomas, and schwannomas. Meningiomas are 

tumors that grow slowly and originate from the meninges, which are the protective 

membranes that cover the brain and the spinal cord. Pituitary adenomas develop from the 

pituitary gland located at the base of the brain and perform a vital function in regulating 

hormone levels in the body. Schwannomas are tumors that arise from Schwann cells, which 
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are responsible for insulating nerve fibers. Primary BT is classified according to their 

histological characteristics and graded on a scale of I to IV, based on the ability of their 

growth and potential to spread. The grades are [11]:  

2.1.1 GRADE I TUMORS  

They are the least aggressive and grow slowly. Typically, they are benign with well-defined 

borders, which makes them unlikely to metastasize to other regions of the brain or body. 

Examples include meningioma and pituitary adenomas.  

 

2.1.2 GRADE II TUMORS 

 Although these tumors grow slowly, they have a higher chance of recurring after treatment. 

They are considered to be low-grade tumors and can be either benign or malignant. 

Examples include astrocytomas and oligodendrogliomas.  

 

2.1.3 GRADE III TUMORS 

These are considered to be malignant tumors, with cells that grow more rapidly and have 

more abnormal features than lower-grade tumors. They have the potential to spread to other 

parts of the brain or the spinal cord. Examples of grade III tumors are anaplastic 

astrocytomas and anaplastic oligodendrogliomas.  

 

2.1.4 GRADE IV TUMORS 

These are the most aggressive and fastest-growing tumors, with cells that are highly 

abnormal and tend to invade surrounding tissues. They are also known as glioblastomas and 

have a very poor prognosis.  

 

2.2 METASTATIC BRAIN TUMOR 

These tumors also referred to as secondary brain tumors, are a particular form of a BT that 

arises from other regions of the body and subsequently spreads (a process known as 

metastasis) to the brain. These tumors are more prevalent than primary BT and comprise 

roughly 10-30% of all BT diagnosed [12]. Notably, the most commonly observed types of 

cancer that can potentially metastasize to the brain encompass lung, breast, colon, kidney, 

and melanoma malignancies.  

Compared to primary brain tumors, metastatic brain tumors are generally more aggressive, 

with the potential to grow and spread rapidly. Depending on their location and size, they can 

manifest a range of symptoms, such as headaches, seizures, limb weakness or numbness, 

changes in vision or speech, and cognitive dysfunction [13]. The methods used to treat 

metastatic BT may include surgery, radiation therapy, chemotherapy, targeted therapy, and 

immunotherapy. The prognosis for metastatic brain tumors can vary depending on factors 

such as the size and number of tumors, the type of cancer, and the patient's overall health. 

However, the overall survival rate for patients with metastatic BT is typically lower than for 

those with primary brain tumors.  
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3. BRAIN IMAGE MODALITIES 

Brain imaging modalities are diagnostic techniques used to produce images of the brain and 

surrounding tissues. These images are used to diagnose and monitor brain diseases and 

conditions, such as BTs, stroke, and neurodegenerative diseases.  

 

3.1 MAGNETIC RESONANCE IMAGING (MRI)  

A strong magnetic field and radio waves are used to generate detailed images of the brain 

and other organs using a non-invasive imaging technique [14]. MRI is one of the most 

sensitive and specific imaging modalities for detecting brain tumors, and it is often used as 

the primary imaging modality for diagnosis, treatment planning, and follow-up information 

about the size, location, and characteristics of BT can be obtained through the use of MRI 

[15]. Tumor tissue typically appears as a region of abnormal signal intensity on MRI, which 

can be differentiated from normal brain tissue [16]. Additionally, MRI can be used to assess 

the extent of tumor infiltration into the surrounding brain tissue [17], as well as to detect the 

presence of edema (swelling) [18] and necrosis (dead tissue) [19] within the tumor. In 

addition to its diagnostic capabilities, MRI is also used to monitor the response of brain 

tumors to treatment, such as surgery, radiation therapy, and chemotherapy [20]. MRI can 

detect changes in tumor size [21], shape, and signal intensity over time [22], which can help 

clinicians assess the effectiveness of treatment and make adjustments as necessary [23]. 

Overall, MRI is an essential diagnostic tool in the clinical practice of BT, and its use is likely 

to continue to increase as technology and techniques continue to advance.  

 

3.2 COMPUTED TOMOGRAPHY (CT) 

It is another imaging modality commonly used for the detection of brain tumors. CT uses 

X-rays to produce detailed images of the brain and can be particularly useful in detecting 

bone abnormalities and small tumors that may be missed on MRI [24]. CT is often used as 

a first-line imaging tool for patients with suspected brain tumors, as it is faster and less 

expensive than MRI. CT scans can also be performed with contrast, which involves the 

injection of a contrast agent to highlight abnormal tissue in the brain [25]. Recent studies 

have shown that CT can be just as effective as MRI in detecting brain tumors, particularly 

for larger tumors or those located in the skull base or posterior fossa [26]. However, MRI is 

still considered the standard imaging modality for brain tumors due to its exceptional ability 

to provide soft tissue contrast and detect even small tumors [27].  

 

3.3 POSITRON EMISSION TOMOGRAPHY (PET)  

It is a medical imaging technique that uses a small quantity of radioactive material to 

generate three-dimensional images of the body [28]. In the context of BT, PET scans can be 

used to detect changes in glucose metabolism [29], which is an indicator of tumor growth 

and activity. In a PET scan, the medical professional injects a small amount of glucose that 

is radioactive in nature (or another tracer) into the patient's body, and cells in the brain 

subsequently absorb it. The radioactive material emits positrons, which collide with 
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electrons nearby, resulting in the production of gamma rays. A specialized ring of cameras 

surrounding the patient detects gamma rays, and a computer generates three dimensions of 

the brain based on the accumulated data [30]. The PET scan is particularly useful in 

detecting recurrent or residual brain tumors, as well as assessing the response of tumors to 

treatment [31]. It can also be used to mark a difference between benign and malignant 

tumors, as malignant tumors tend to have higher levels of glucose metabolism [32]. Recent 

studies have shown the potential of PET imaging with novel tracers in the detection and 

monitoring of BT. For example, a 2021 study published in the Journal of Nuclear Medicine 

found that a new PET tracer, FAMT, was able to accurately differentiate between glioma 

and non-glioma brain tumors with high sensitivity and specificity. Another study published 

in the same journal in 2020 showed that a PET tracer called FDG (Fluoro-D-glucose) can 

be used to assess the molecular characteristics of gliomas and predict their response to 

treatment [33].  

 

3.4 SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT) 

Another imaging modality is used for BT detection. SPECT uses a radioactive tracer that is 

injected into the bloodstream and travels to the brain [34]. The gamma camera detects the 

gamma rays emitted by the tracer to generate three-dimensional images of the brain. SPECT 

imaging can be used to differentiate between tumor tissue and healthy brain tissue, as tumor 

tissue tends to be more active and metabolically active than healthy brain tissue [35]. This 

technique can also be used to monitor the response of brain tumors to treatment, as changes 

in tumor activity can be detected through SPECT imaging [36].  

A study published in the Journal of Nuclear Medicine Technology in 2020 evaluated the use 

of SPECT imaging in the diagnosis and management of brain tumors. The study found that 

SPECT imaging was useful in identifying the location and extent of brain tumors, as well as 

in monitoring the treatment response and detecting recurrent tumors [37]. A study published 

in the Journal of Neuro-Oncology in 2019 looked into the use of SPECT imaging to predict 

how fast a type of brain tumor called glioma might grow and how long patients with this 

tumor might survive. The study found that SPECT imaging helped make these predictions 

[38].  

 

3.5 FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

FMRI is a non-invasive imaging technique that utilizes magnetic fields and radio waves to 

visualize alterations in the blood flow within the brain. This technology has become an 

important tool in the detection of BT, as well as in the planning and monitoring of treatment 

[39]. FMRI is a technique that can help identify the brain regions affected by a tumor in BT 

detection [40]. This information can guide surgeons in planning the surgical approach for 

tumor removal and avoiding damage to critical areas of the brain that control vital functions 

such as movement, speech, and vision. Furthermore, fMRI can also be utilized to track the 

advancement of the tumor and assess the efficacy of the treatment [41].  
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4. MOLECULAR MARKERS FOR THE DETECTION OF BRAIN TUMORS 

Molecular markers are specific molecules or genes that are expressed differently in normal 

cells versus tumor cells. They can be used as indicators of the presence of a tumor, as well 

as its subtype, aggressiveness, and response to treatment [42]. In brain tumor detection, 

molecular markers can be used to complement traditional imaging techniques like CT scans 

and MRIs. For example, a biopsy of a suspected brain tumor can be analyzed for the 

presence of specific molecular markers, which can help confirm the diagnosis and guide 

treatment decisions.  

Several types of molecular markers have been identified for brain tumor detection, including 

[43]:  

 

4.1  DNA MUTATIONS 

These are changes in the DNA sequence that are associated with tumor development and 

progression. Examples include mutations in the IDH1 and IDH2 genes, which are found in 

a subtype of glioma [44].  

 

4.2  GENE EXPRESSION PATTERNS  

These are differences in the expression of certain genes between normal cells and tumor 

cells. Examples include the expression of the MGMT gene, which is associated with 

response to chemotherapy in glioblastoma [45].  

 

4.3 PROTEIN MARKERS 

These are proteins that are expressed differently in normal cells versus tumor cells [46]. 

Examples include the EGFR protein, which is overexpressed in a subtype of glioblastoma.  

 

4.4 MICRORNA MARKERS 

The small RNA molecules help in the regulation of gene expression and are differentially 

expressed in normal cells and tumor cells [47]. Examples include the miR-21 molecule, 

which is associated with glioma progression and poor patient prognosis.  

Overall, the use of molecular markers in the detection of BT is a dynamic research field, 

which holds great potential in improving the diagnosis and treatment outcomes for patients 

with BT [42]. Although these markers have shown promise, their clinical utility needs to be 

validated through further studies, and their use in the clinic needs to be optimized.  Table 1 

shows the names of molecular markers along with the diseases associated with the respective 

mutations.   

Table 1. Molecular Biomarkers for Brain Tumor  

Biomarker and  

Associated mutation  

Diseases  Prognostic  Diagnostic  Ref# 

Mutations in the IDH1/2 gene  Oligodendrogliomas, 

astrocytoma, glioblastoma  
✓  ✓  [48]  

Methylation of  

MGMT  

Glioblastoma  ✓  ✗  [49]  
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promoter  

Amplification of EGFR gene  Glioblastoma  ✓  ✗  [49]  

The Loss of PTEN gene  Glioblastoma  ✓  ✓  [50]  

Mutations in TP53 gene  Glioblastoma  ✓  ✓  [49, 51]  

Mutations in the ATRX gene  Glioma  ✓  ✓  [52]  

Short arm deletion in chr no. 1 
& long  

arm deletion in chr no.  19  

Oligodendroglioma ✓  ✓  [53]  

Mutations in  

H3F3A or  

HIST1H3B gene  

Diffuse midline glioma  ✓  ✗  [54]  

Mutation in  

BRAF gene  

Pilocytic astrocytoma  ✓  ✗  [55]  

 

5. PREPROCESSING 

Preprocessing is a crucial step in BT detection using MRI, as it aims to improve image 

quality [65] and reduce artifacts that can affect the accuracy of subsequent analysis [66]. 

Various preprocessing techniques [67] have been proposed in recent research, including 

bias, field correction [68], skull stripping [69], normalization [70], noise reduction [71], 

image enhancement [37], and feature extraction [39]. These techniques are used for intensity 

variations, removing non-brain tissue, aligning images from different modalities or time 

points, normalizing images to standard space, reducing noise, enhancing image contrast, and 

extracting relevant features for machine learning or other analysis [72]. A brief summary of 

publicly available Brain tumor datasets is given in Table 2.  

Table 2. Summary of Datasets for BT Detection  

 Ref# Dataset Name  Description  Modality  Year  

[1] BT- Figshare Imbalanced MRI dataset for 

brain tumor categorization 

with weighted loss and deep 

feature fusion 

MRI 2023 

[2] Local dataset Extensive Brain 

metastatic(BM) legions 

Automatic BM 

detection, lesion 

segmentation 

2023 

[58, 59]  The Cancer Imaging  

Archive (TCIA)  

Large collection of publicly 

available cancer imaging data  

MRI, CT, PET  2019  

[60]  BRATS  Multimodal brain tumor dataset 

for segmentation tasks  

MRI  2022  

[61]  ISLES  Dataset for ischemic stroke 

lesion  

Segmentation (ISLES)  

MRI  2022  

[62]  LGG  Dataset containing  

lower grade glioma  

(LGG) brain tumor images  

MRI  2020  

[63]  ADNI  Neuroimaging data from 

subjects with brain tumors  

MRI  2021  

[64]  CPTACGBM  Proteomic and genomic data for 

glioblastoma  

Proteomics, genomics  2016  
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5.1 IMAGE SEGMENTATION  

It is an important and critical task in brain tumor detection, and diagnosis [73], as it involves 

separating different tissues in the brain and isolating the tumor region for further analysis. 

Various techniques of segmentation have been proposed in recent research, including 

thresholding, region growing, clustering, active contours, level sets, graph-based methods, 

and DL-based methods [74]. These techniques aim to accurately segment the tumor region 

while minimizing false positives and false negatives, which can affect diagnosis and the 

ways of treatment of brain tumors.  

Recent research has shown that DL-based methods can achieve state-of-the-art performance 

in BT segmentation, with CNNs being the most commonly used architecture [75], [76]. 

Usually, these techniques involve training a CNN on an extensive dataset of annotated 

images [77] to acquire the features that differentiate tumors from non-tumor regions. Some 

data augmentation techniques [78], like rotation, scaling, translation, and flipping, can be 

used to increase the size of the training set and improve generalization [79]. Several studies 

have also proposed novel models or modifications to existing models to improve 

segmentation performance [80]. Along with the DL-based methods, other segmentation 

techniques have also been proposed in recent research. For example, graph-based methods 

have been used to model the relationships between different regions in the brain and improve 

segmentation accuracy [81]. Active contours and level sets have been used to incorporate 

prior knowledge about the shape and location of tumors to improve segmentation 

performance [82]. Hybrid approaches that combine multiple segmentation techniques have 

also been proposed [83]. A summary of image Segmentation Techniques for BT is given in 

Table 3.  

Table 3: Summary of Image Segmentation Techniques 

 

 5.2 NORMALIZATION   

Normalization is an essential preprocessing step in BT detection and diagnosis. It is used to 

standardize the intensity values of the magnetic resonance images (MRI) across different 

patients and scanners, reducing inter-subject variability and improving the performance of 

subsequent processing steps [86]. There are various normalization techniques proposed in 

Ref# Year  Segmentation methods  Datasets  Accuracy  

[84]  2019  U-Net 2D structure  BRATS 2015 BRATS 

2017  

0.876%  

[71]  2022  U-Net, DeeplabV3+  BRATS 2015/2018  0.23%  

[85]  2020  3D U-Net architecture  BRATS 2018 Local 

hospital dataset  

0.67%   

[73]  2017  DeepLab, semantic image 

segmentation  

BRATS 2015  0.78%  

[79]  2020  3D fully CNN based on U-net 

CRF  

BRATS 2017  

MNI-HISUB25  

95.88% whole 

MNI- 

HISUB25  
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recent research, including Z-score normalization, histogram normalization, quantile 

normalization, and scale-invariant feature transform (SIFT) normalization [79].  

One commonly used normalization method is Z-score normalization, which transforms the 

intensity values of each voxel in the image to a standardized Z-score based on the mean and 

standard deviation of the intensities in the whole brain [87]. Histogram normalization is an 

alternative technique that adjusts the intensity distribution of an image to correspond to a 

given reference histogram, such as a healthy brain image or a population-based histogram 

[86]. Quantile normalization, on the other hand, matches the quantiles of the intensity 

distributions between the images, ensuring that the same percentage of voxels in each image 

has the same intensity value [88]. SIFT normalization is a more recent technique that uses 

local feature descriptors to normalize the images based on their scale and orientation, 

enhancing the contrast between the tumor and surrounding tissues [53, 55]. The choice of a 

normalization method depends on the characteristics of the data and the specific research 

question. Recent studies have shown that using a combination of different normalization 

methods can result in better performance of BT detection, and segmentation [89].  

5.3 FEATURE EXTRACTION   

Feature extraction is a crucial step in the detection of BT using artificial intelligence models. 

Researchers have utilized various techniques for feature extraction, such as wavelet 

transform [91], gray-level co-occurrence matrix [92], histogram of oriented gradients 

(HOG) [93], auto-encoder [94], discrete wavelet transform (DWT) [95], curve let transform 

[95], and texture feature extraction [96]. Deep CNNs have been employed for BT detection 

with feature extraction as a primary step [95, 97,  98]. Researchers have used a combination 

of CNNs and other machine learning models such as support vector machine 

(SVM)[99],[92], random forest [97], and k-nearest neighbors (KNN) [100]. The datasets 

used by researchers for brain tumor detection and classification vary widely. Some studies 

have used publicly available datasets such as the BraTS dataset [95, 97, 101], while others 

have used their customized datasets [93].  

 

6. DL MODELS FOR THE DETECTION OF BT 

DL models are a type of artificial intelligence that can automatically learn to identify patterns 

and features in complex datasets. They consist of multiple layers of interconnected artificial 

neurons that can process and analyze large amounts of data. Training DL models on vast 

datasets enables those to perform a variety of tasks, including image classification, object 

detection, and natural language processing [102]. In the context of BT detection, DL models 

can analyze medical images such as MRI scans and identify regions that are indicative of 

tumors [103]. They can learn to differentiate between healthy brain tissue and tumor tissue 

and can provide accurate and consistent results [104]. Recent studies have shown promising 

results for the use of DL models in BT detection. For example, a study published in 2019 

used a DL model to detect BT in MRI scans with a high level of accuracy [90]. Another 

study of BT tumors is based on their histology [105].  
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a. Convolutional Neural Networks (CNNs) belong to the category of DL models, 

which are capable of learning and recognizing patterns and features in images. 

CNNs consist of numerous convolutional and pooling layers, followed by fully 

connected layers, primarily used for classification purposes. Analyzing medical 

images, such as Magnetic Resonance Imaging (MRI) scans, using CNNs can aid 

in the detection of brain tumors. A study published in 2018 used a CNN to detect 

brain tumors in MRI scans with a high level of accuracy [106]. Another study 

published in 2018 showed that a CNN could be used to differentiate between 

different types of brain tumors based on their appearance on MRI scans [75]. A 

2019 study used a CNN to detect BT in pediatric patients with high accuracy and 

sensitivity [107]. A 2017 study demonstrated that a CNN could accurately classify 

brain tumors based on their genetic profile [108].In 2022, a study showed that a 

CNN could be used to detect BT in MRI scans with higher accuracy than human 

experts [109]. Another 2021 study demonstrated that a CNN could accurately 

differentiate between benign and malignant BT based on MRI scans [110].  

b. Recurrent neural networks (RNNs) are a type of DL model that is designed to 

process sequential data, where the output from the previous step is fed back as an 

input to the current step. In the context of BT detection, RNNs have been used to 

analyze time-series data from electroencephalogram (EEG) recordings to predict 

tumor progression and recurrence [111]. For example, one study used a 

combination of RNNs and CNNs to predict the survival time of patients with 

glioblastoma multiform based on MRI images [112]. Another study used a DL 

model based on RNNs to analyze EEG recordings and predict the progression of 

glioblastoma [113]. Overall, RNNs are a powerful tool for analyzing sequential  

Data in the context of BT detection could potentially improve patient outcomes by 

enabling earlier detection and more accurate prognostication [114].  

c. Three-dimensional convolutional neural networks (3D CNNs) are DL models 

that can extract spatial features from volumetric data. In the context of BT 

detection, 3D CNNs have shown great promise due to their ability to capture 

complex patterns and relationships in three-dimensional medical imaging data 

[115]. Researchers have explored the use of 3D CNNs for brain BT detection by 

analyzing MRI images. One study used 3D CNNs to segment BT from MRI scans 

and compared their results to manual segmentation by radiologists [115]. Another 

study developed a 3D CNN model to classify BT based on MRI images and 

achieved high accuracy in tumor classification [116]. In addition, researchers have 

also used 3D CNNs to assist in tumor grading and distinguishing between different 

types of brain tumors. For example, a study proposed a 3D CNN model to predict 

the molecular subtypes of gliomas based on MRI scans [117]. Overall, 3D CNNs 

have shown great potential in improving the accuracy and efficiency of BT 

detection and classification [118]. Table 4 shows the comparison of DL models. 
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Table 4. Comparison of Existing Deep Learning Models  

 

7. EXISTING CHALLENGES AND LIMITATIONS IN BT DETECTION 

Detecting BT is a challenging task as they can be small in size, have irregular shapes, and 

be located in critical brain regions, making it difficult to differentiate between healthy and 

cancerous tissues [119]. Despite the promising results of DL models for BT detection, some 

challenges and limitations still need to be addressed [120]. One of the main challenges is 

the lack of large annotated datasets, which can affect the generalization of the models and 

lead to overfitting [121]. In addition, there is a lack of standardization in the preprocessing 

of medical images, which can lead to inconsistencies in the data and affect the accuracy of 

the models [122]. Furthermore, some studies have shown that DL models can be sensitive 

to variations in image quality, such as noise and artifacts, which can affect the performance 

of the models [123].  

Another limitation is the interpretability of the models, which can be a concern for clinical 

applications. DL models are often seen as black boxes, making it difficult to understand how  

they arrive at their predictions. This can be a significant barrier to the adoption of these 

models in clinical practice, as clinicians need to be able to interpret the results and make 

informed decisions based on them. There is a need for more research on how to make deep 

learning models more transparent and interpretable [124].  

DL  

Model  

Description Architecture  Feature  

Extraction  

Temporal 

or Spatial 

Informati

on  

Training 

Process  

Performance 

Measures 

CNN  Effective for 

image 
classification 

and 

segmentation 
tasks in brain 

tumor 

detection.  

Convolutional 
layers with 
pooling and  

fully connected 

layers  

Automatically  

learns relevant 

features from 

medical images  

N/A  Backpropagati

on with 

gradient-based 

optimization  

Accuracy, 

precision,  

recall, F1  

score  

RNN  Suitable for 
processing 

sequential  

and  time- 

Series data in 

brain tumor 

analysis.  

Recurrent 
layers (e.g.,  

LSTM, GRU)  

Captures 

temporal 

dependencies in 

data  

Models 

temporal 

informatio

n across 

sequences  

Backpropagati

on through 

time  

Accuracy, 
precision,  

recall, F1  

score  

3D 

CNN  

Extends  

CNN  to  

Work 
directly with 
3D volumes, 

capturing 
spatial 
information  

in brain 

images.  

3D 

convolutional 
layers with 
pooling and  

fully connected 

layers  

Learns spatial 

features in 3D 

space  

Captures 

spatial 

relationshi

ps in 

volumetric 

data  

Backpropagati

on with 

gradient-based 

optimization  

Accuracy, 
precision,  

recall, F1  

score  
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Moreover, DL models can be computationally expensive and require significant computing 

resources [125]. This can make it difficult to deploy these models in resource-limited 

settings hospitals or clinics. There is a need for more research on how to optimize the 

performance of deep learning models while minimizing their computational requirements 

[126]. Finally, there are ethical and legal challenges associated with the use of DL models 

for medical diagnosis. For example, there are concerns about privacy and data security when 

using medical images for training deep learning models. Additionally, there are questions 

about liability and accountability when using these models to make medical decisions. More 

research is needed to address these issues and ensure that the use of deep learning models 

for medical diagnosis is ethical, legal, and responsible.  

In a study conducted in 2020, the authors investigated the use of DL algorithms for the 

automatic detection of BT in MRI images. The study reported that the major challenge in 

detecting BT using DL algorithms is the lack of annotated data, which limits the training 

and validation of the algorithms [127]. Another challenge highlighted in 2018 is the high 

variability in BT appearance and location, making it difficult to develop a single algorithm 

that can accurately detect all types of BT [128]. The high false-positive rate of AI and ML 

algorithms for BT detection is another limitation. As reported in one article, false-positive 

results can lead to unnecessary invasive procedures, which can be harmful to patients [129]. 

Data and model limitations along with the clinical challenges in the detection of BT are 

discussed in Table 5.  

Table 5. Limitations and challenges of Deep Learning Models  

Ref# Data Limitations  Model Limitations  Clinical Challenges  

[86]  Limited availability of annotated 

data for training deep learning 

models, variability in data 

quality, bias, and interpretability  

High computational cost 
and  storage  

requirements  

Complex and variable nature of 

brain tumors, the need for accurate 

diagnosis and treatment planning  

[87]  Limited sample sizes, 

imbalanced datasets, variability 
in imaging modalities and  

parameters  

Overfitting and selection 

bias in model 

development  

Limited generalizability across 

different patient populations and 

clinical settings, difficulty in 

distinguishing between tumor and 

normal tissue  

[88]  Limited availability of large-

scale, annotated datasets for 

detecting brain tumors  

Limited  

performance of current 
image many population 

detection models  

To detect manipulated medical 

images that can lead to incorrect 

diagnoses and treatments.  

[89]  Lack of standardized protocols 

for data acquisition, 

preprocessing, feature extraction, 

and model training and validation  

Limited generalizability 

of models to different 

datasets  

reduce the variability of medical 

images caused by different 

 imaging modalities, 

image resolutions, and image 

quality  

[90]  Limited access to high-quality 
healthcare data for training 
 and validation  

Lack of standardization 

in AI development  

and evaluation  

Ethical Considerations and potential 

biases in AI  

Applications  

[91]  Limited availability of annotated 

data, variability in imaging 

protocols, and quality  

Difficulty  in 

interpretability and 

explainability of models  

Integration of AI into clinical 

workflow, validation, and  

generalizability of models  
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[92]  Limited computational  

resources for developing and 

training deep  

learning models  

Lack of optimization 

techniques  

To develop deep learning models 

that can perform accurate diagnoses 

with a limited amount of 

computational resources, such as 

time and hardware. 

[93]  Limited interpretability of deep 

learning models, overfitting, and 

selection bias  

Hyperparameters To develop deep learning models 

that can perform accurate diagnoses 

with a limited amount of 

computational resources, such as 

time and hardware.  

[94]  Limited availability of annotated 
data for training deep learning 
models, limited sample  

sizes  

Difficulty in identifying 

tumor boundaries and 

heterogeneity of tumors  

Validation and generalizability of 

models to different populations  

[95]  Difficulty  in  

distinguishing between tumor 

and normal tissue  

Difficulty in identifying 

tumor boundaries and 

heterogeneity of tumors  

Need for interpretability and 

transparency in  

clinical decision-making  

[96]  Limited availability of high-

quality, annotated data for 
training and  

validation  

Difficulty  in 

interpretability and 

explainability of models  

Limited generalizability across 

different patient populations and 

clinical settings needs for accurate 

diagnosis and treatment planning  

 

8. CONCLUSION 

Detecting BT using AI is a promising field with significant potential for improving the 

accuracy and efficiency of diagnosis. In this survey, we have explored the different types 

and subtypes of brain tumors, the various brain image modalities used in diagnosis, and the 

molecular markers that can aid in detecting brain tumors. Additionally, we have discussed 

several preprocessing techniques that can help enhance the quality of medical images and 

improve the performance of AI algorithms. Finally, we have reviewed some of the most 

promising deep-learning models that have been developed for the detection of brain tumors. 

The results of our survey show that the use of AI in the detection of brain tumors has several 

advantages over traditional methods, including increased accuracy, speed, and the ability to 

detect tumors in their early stages. However, there are still several challenges that need to 

be addressed, such as the limited availability of large-scale annotated datasets, the need for 

more robust and interpretable AI models, and the need to integrate AI with clinical 

workflows to ensure that patients receive timely and effective treatment. Overall, we believe 

that the continued development and refinement of AI-based methods for the detection of 

brain tumors will lead to significant improvements in patient outcomes and contribute to the 

advancement of our understanding of this complex disease.  
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