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ABSTRACT 

Gunshot detection and localization is a frontier technology in security systems. With an 
increasing rate of shootings globally, gunshot events and directional awareness are crucial for 
the law enforcement agencies for a timely response. This paper presents a real-time 
computational efficient gunshot detection and localization system. First, the performance of 
Mel-frequency cepstral coefficients, linear prediction coefficients, Gammatone cepstral 
coefficients, and spectral centroid as an audio feature for acoustic gunshot detection is 
thoroughly analyzed. Then, a bagged tree ensemble and support vector machine classifiers are 
trained and tested on a diverse gunshot database under different SNR settings, using a 10-fold 
validation technique. The detection accuracy of 97.3% with a sensitivity of 0.978 and a 
specificity of 0.988 is achieved. The test-train curves corroborate the fitness and generalization 
of the trained detection model. After the detection, the localization is performed by calculating 
the arrival time difference using a general cross-correlation phase transform. Finally, the 
system is implemented on an experimental test-bed for real-time performance evaluation. 
Field tests indicate the proposed system's effectiveness to detect and localize a gunshot in 0.7-1 
seconds. 
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1. INTRODUCTION 
Recently, there has been an alarming rise in gun violence and mass shootings worldwide. 
According to [1], there were more than 19,000 deaths due to gun usage and 611 mass 
shooting incidences in the US alone in 2020. In such scenarios, the timely detection and 
intimation of a gunshot to law enforcement agencies and security professionals is pivotal 
for prompt and accurate response. Further, situational awareness is even more critical for 
military operations against terrorism and VIP movements to protect them from gunfire 
threats and attacks of a trained marksman (i.e., a sniper). In such cases, directional 
localization after detection is crucial to counteract a threat effectively. Therefore, it is 
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interesting to have a system to detect gunshot incidences and help localize and neutralize 
such threats. 
A gunshot event can be detected based on the sound of mechanical action of firearms, the 
muzzle blast, and the projectile shock wave for supersonic bullets. The acoustic signature 
of the mechanical action of firearms is generated due to the trigger movement, hammer 
mechanisms, bullet ejection, and reloading. As the sound intensity of the mechanical 
action is much lower than the muzzle blast and shock wave, it is not considered for the 
gunshot event detection [2]. The shock wave is generated by the bullets moving at a 
supersonic speed and has frequencies ranging from 3000 to 7000 Hz. A muzzle blast is 
due to the explosion of an explosive charge, which the bullet uses to propel out of a gun 
barrel. Its acoustic signature usually lasts for 3 to 5 milliseconds with frequencies ranging 
from 300 to 1000 Hz and can be identified from a distance ranging from several hundred 
meters to a kilometer [2]. Therefore, the muzzle blast is generally considered the primary 
acoustical evidence for gunshot detection. 
A gunshot event can be detected based on an adaptive threshold or a concise parametric 
representation (i.e., the acoustic feature) of gunshot acoustical evidence. By using the 
acoustic features, the acoustic gunshot fingerprints are captured uniquely. Furthermore, 
the acoustic features are more discriminative and reliable than gunshot audio for gunshot 
detection. Based on the technique, the acoustic features can be learned or hand-crafted. 
The learned features are automatically extracted from deep learning (DL) techniques such 
as neural network (NN), convolution neural network (CNN), recurrent neural network 
(RNN), etc. In contrast, hand-crafted features require expert feature engineering 
knowledge and are engineered manually for an application. 
The state-of-the-art gunshot detection methods are generally based on acoustic features. 
For example, Mel-frequency cepstral coefficients (MFCC) [3] and linear prediction 
coefficients (LPC) [4] are ubiquitous in audio event detection-related studies. However, 
the contribution of these and other features towards acoustic gunshot detection is not well-
assessed in the literature. More importantly, the real-time performance evaluation of 
gunshot detection and localization is seldom presented in the previous related work. 
Nonetheless, this is crucial as the real-time performance of gunshot detection systems can 
be largely influenced due to the noisy conditions. More importantly, it is critical to 
develop a system with low computational complexity to ensure timely gunshot detection 
and the localization of the target. However, this important aspect is generally ignored in 
state-of-the-art. 
This paper presents a robust and computationally tractable machine learning-based real-
time gunshot detection and localization system. Towards ameliorating this, the assessment 
of the contribution of four different features for detecting the acoustic gunshot for 
different noise settings is performed using a challenging, diverse database. It is important 
to note that, to the author's best of knowledge, among the utilized features, the 
Gammatone cepstral coefficients (GTCC) [5] have not been used for gunshot detection. 
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Furthermore, a two-dimensional localization scheme with reduced computational 
complexity is utilized for gunshot localization that employs a reduced number of 
microphones. Finally, the real-time performance evaluation is presented through a 
complete hardware-based field-deployable solution based on the proposed gunshot 
detection and localization schemes. 
The rest of the paper is organized as follows: Section II details the related gunshot event 
detection work; the proposed methodology for detection and localization is presented in 
Section III; the experimental setup is elaborated in Section IV; results with discussions are 
presented in Section V, and the paper is concluded with future work in Section VI. 

2. RELATED WORK 
Several methods have been proposed in the literature for acoustic gunshot detection. These 
methods generally rely on detecting a gunshot impulsive acoustic signature and can be 
categorized into threshold-based and acoustic features-based detection approaches. 
Threshold-based methods calculate an energy value from the current input window and 
compare it with prior values [6, 7]. A correlation-based template-matching technique is 
proposed in [8]. A gunshot is detected if the general cross-correlation of the captured 
signal against a gunshot template exceeds a pre-defined threshold value. A comparison of 
template-matching and generalized cross-correlation based on Hilbert kernel spaces is 
presented in [9]. It concludes that generalized cross-correlation provides more satisfactory 
results than the template matching technique. 
The acoustic feature-based gunshot detection methods can be grouped into techniques that 
rely on hand-crafted features and those based on learned features. Techniques based on 
hand-crafted features train a classifier (supervised machine learning (ML) model) on pre-
selected features using a set of labelled training data to discriminate between a gunshot 
and environmental acoustic event. The features employed for training purposes generally 
include spectral features, energy features, LPC, MFCC, or a combination of these [10-14, 
40]. The classification of detected sound based on the extracted features is then done by 
using neural networks (NN) or ML tools such as support vector machine (SVM) [15, 41], 
hidden Markov model (HMM) [16], or Gaussian mixture model (GMM) [17], etc. The 
techniques based on learned features employ deep learning (DL) algorithms to learn and 
extract suitable gunshot acoustic features in a fully automated manner. In [18], VGG-16 
and InceptionV3 CNN architectures trained on 2D representations of audio signals images 
are used for gunshot detection. A multilayer NN is proposed in [19, 20] for acoustic event 
detection and compared with HMM for the gunshot classification.  
The threshold-based gunshot event detection techniques generally rely heavily on a pre-
defined threshold and, therefore, tend to underperform in a noisy environment. 
Consequently, hybrid techniques are proposed that use thresholding in the pre-processing 
stage for filtering before the feature extraction [21-23]. 
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Table 1: Summary of the state-of-the-art. 
Sr. 
No. Method Approach Weakness and Strengths 

1 Mäkinen et al. 
[6] 

Threshold-
based 

Derivative of the energy envelope function 
formed by taking the Short-time Fourier 
transform of the signal is utilized for 
gunshot detection. 

2 Kotus et al. [7] A gunshot is detected based on the energy 
of the signal. 

3 Samireddy et al. 
[8] 

General cross-correlation against the signal 
template is performed for gunshot 
detection. 

4 Djeddou et al. 
[10] 

Handcrafted 
feature-based 

Gunshot detection through GMM trained 
on MFCC and LPC. 

5 Hrabina et al. 
[11] 

Detection is done using a NN trained on 
different combinations of LPC, LPCC and 
MFCC. 

6 Hrabina et al. 
[12] 

NN trained on low-level time domain 
features are employed for detection.  

7 Singh et al. [13] 
Gunshot incidence detected through SVM 
trained on discrete wavelet transform-based 
features.  

8 Sigmund et al. 
[14] 

Detection through single and ensemble 
NNs trained on MFCC and time-domain 
features. 

9 Bajzik et al. [18] 

Automated 
Learned 
feature-based 

2D CNN trained on the spectrograms for 
gunshot detection. 

10 Papadimitriou et 
al. [19]  

2D CNN trained on Short-time Fourier 
transform and MFCC spectrograms for 
event detection. 

11 Conka et al. [20]  Event detection through a recurrent neural 
network 

12 Ahmed et al. [21] 

Hybrid  

SVM trained on LPC in conjunction with 
template matching measure used for 
gunshot detection. 

13 Hrabina et al. 
[22] 

Gunshot acoustical detection is based on 
LPC, sub-band spectral energy comparison, 
and correlation against a template. 

14 Rahman et 
al.[23] 

Detection through ML classifiers trained on 
antilog energy features coupled with initial 
threshold-based filtering based on signal 
energy. 

In contrast, though highly accurate and powerful, DL-based techniques are generally 
complex and demand a large training dataset for learning suitable features for event 
detection, which is usually scarce for gunshot event detection. Moreover, DL-based 
techniques can also be compromised in real-time event detection due to overfitting the 
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training data. Therefore, techniques based on hand-crafted features are generally the most 
reliable and computationally simple to implement. Table I summarizes the related work.  
Once the gunshot incidence is detected, localizing the source is usually solved by 
estimating the time difference of arrival (TDOA) to calculate its direction of arrival 
(DOA). This can be carried out by the use of the steered response power phase transform 
(SRP–PHAT) [24] or generalized cross-correlation phase transform (GCC–PHAT) [25]. 
 

3. METHODOLOGY 
The block diagram of the proposed acoustic gunshot detection and localization system is 
shown in Fig. 1, and details of each stage are presented in this section. 

 
Fig. 1. Proposed system’s framework. 

A. Training Corpus 
Corpora are imperative in developing ML-based detection systems as the trained model's 
behavior and accuracy depend mostly on the quantity and quality of the training data. To 
build our training corpus, we used two datasets for each class of interest: gunshot and 
environment. 
Gunshot acoustic samples were acquired from the free firearm library [26], which contains 
audio samples of AK-47, AR-15, Arisaka, Carl Gustav m/45, Marlin 336, Mosin-Nagant, 
Norinco SKS, PPSh, Ruger 10/22, Tikka, Winchester and Benelli Nova rifles, machine 
guns and shotguns gunshots. Each sample has a duration of 3 seconds, sampled at 44.1 
kHz. All files were converted to mono WAV format, and then additive white Gaussian 
noise (AWGN) was added with different signal-to-noise ratio (SNR) values to make the 
gunshots samples noisy. 
The environmental audio samples were obtained from the database named ESC-50 [27]. 
ESC-50 constitutes environmental sounds like animal voices, vehicles and aircraft sounds, 
door opening/closing, glass breaking, siren and bell-ringing, etc. [28]. Table II gives the 
details of the selected samples for the negative environmental sound class. Each sample 
has a duration of 5 seconds. 
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The resulting corpus has 1000 audio files, with 250 acoustic samples for the positive class 
and 750 for the negative class.  

B. Feature Extraction 
The classification accuracy of any ML-based system depends highly on the features 
extracted from the input signal. These features should be a concise parametric 
representation that is more reliable and discriminative for the classification purpose than 
the actual input signal. To this effect, we propose to use MFCC [3], Gammatone cepstral 
coefficients (GTCC) [5], LPC [4], and spectral centroid (SC). In Table III, the parameters 
and mathematical formulas to extract these features are detailed, summarized as follows: 
• MFCC models the human auditory system via a set of triangular filters equally 
spaced on a perceptual pitch scale (aka. Mel scale) [3]. The efficacy of MFCC for audio 
classification is proven and well-established [29, 30]. 
• LPC is based on a predictive linear model to imitate the human vocal tract. The 
LPC coefficients are computed by predicting the frequency and intensity of the residual 
signal generated by removing the estimated formant effect from the speech signal through 
inverse filtering [4, 31]. 
 

Table 2: Characteristics of the Negative class of Database, i.e., the Environment Sound. 

Category Samples 
Animals  20 
Water sounds and Natural soundscapes 50 
Non-speech and Human sounds 80 
Domestic and Interior sounds 200 
Urban and Exterior noises 400 

 

      
Fig. 2. Microphone array configuration for localization (a) Front view and (b) Top view. 
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Table 3: Mathematical Expression for Extracting MFCC, GTCC, LPC, and SC Acoustic Features. 
Features Formulas Description 

MFCC 

 

 is the MFCC coefficient index in the 
range of ;  is the total number of 
MFCC coefficients;  is the th 
MFCC coefficient;  is the mel 
magnitude of the signal when applying 
the th triangular filter; and  is the 
number of triangular filters. 

LPC 
 

 is the th predicted audio sample; 
 is the th LPC coefficient;  is the 

total number of LPC coefficients; and 
 is the th original audio sample. 

GTCC 
 

 is the GTCC coefficient index in the 
range of ;  is the total number of 
GTCC coefficients;  represents the 

th GTCC coefficient;  is the energy 
of signal in the th spectral band; and  is 
the number of GT filters. 

SC 
 

 is the input signals power spectrum and 
 is the frequency index 

 
• GTCC uses a rectangular bandwidth-based Gammatone (GT) filter and is a 
biologically inspired modification of the MFCC [5]. GT filters model the spectral analysis 
performed in the cochlea, specifically, the human auditory response. 
• The SC estimates the center of mass of the spectrum and is the first order 
normalized spectral moment. 
While both MFCC and LPC have been utilized ubiquitously, GTCC and SC are generally 
not employed for gunshot detection. Further, these four audio descriptors' individual and 
combined contribution towards acoustic gunshot detection and classification is not well 
investigated. The total extracted GTCC and MFCC coefficients are 13 each in the 
following tests, and the total extracted LPC coefficients are 8. 
 

C. Classifier 
For the classification of the acoustic sample, the bagged tree ensemble [32] and the 
support vector machine (SVM) classifier models are trained and tested on the extracted 
features. The ensemble method is a supervised ML algorithm in which a new classifier is 
derived from various base classifiers. For example, an ensemble of bagged tree classifiers 
combines a decision tree classifier and bagging algorithm. The bagging algorithm (also 
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called bootstrap aggregation) is one of the most commonly utilized ensemble methods. 
The derived classifier has a better classification decision performance and robustness due 
to reduced over-fitting than any constituent base classifiers alone. Moreover, the bagged 
tree ensemble classifiers are generally more generalized and accurate in out-of-sample 
testing [33]. SVM works on the principle of margin maximization, where multi-class data 
is classified into multiple groups by constructing a hyper plan- with maximum possible 
variance. Both classifiers are trained on the individual and different combinations of the 
features to assess and investigate their impact on gunshot detection. 
 

D. Localization 
The localization is performed by calculating the time difference of arrival of the gunshot 
acoustic signal, using the GCC-PHAT transform [34]. GCC-PHAT is selected compared 
to the SRP-PHAT due to its robustness in noisy environments and computational 
efficiency compared to the SRP-PHAT. In Fig. 2, the five-microphone array employed for 
gunshot localization is shown. While microphones 3, 4 and 5 are used to estimate the 
azimuth angle, microphones 1 and 2 are employed to estimate the source's elevation. 
After estimating the time difference of arrival of gunshot acoustic, the technique proposed 
in [35] is used to find out the azimuth angle. First, the direction of arrival (DOA) is 
estimated by applying a coherence threshold between DOAs found with each microphone 
pair. Then, after a pairwise estimation of DOA, a redundancy check is performed on the 
three DOA pairs to find if the three interaural time differences (ITDs) are from a sound 
source positioned in the same angle sector. The check involves the calculation of the 
average of the differences between the DOA pairs. Once the DOAs are found to be 
coherent, the DOA with the minimum absolute ITD value is selected from the DOA set. It 
is pertinent to mention here that this technique assumes a planar type sound wave, i.e., the 
sound source is placed in the microphone array's far-field region. Once the azimuth angle 
is calculated, the binaural sound localization approach uses two microphones to compute 
the elevation angle. 

4. EXPERIMENTAL SETUP 
This section details the experimental setup (depicted in Fig. 3), employed to evaluate our 
real-time deployable gunshot detection and localization system.  
 

A. Microphone Array 
The array shown in Fig. 2 employs 5 RTA-M electret microphones [36] which have the 
following specifications: 

 Polar Pattern: Omnidirectional 
 Frequency Range: 20 Hz ~ 20 kHz 
 Element: Back Electret Condenser 
 Impedance: 250  ± 30% (at 1 kHz) 
 Sensitivity: -63 ± 3 dB 
 Operating Voltage: 9 ~ 52 V DC 
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 Audio Interface 
To digitally capture the five input signals from the microphone array, the open-sourced 
audio interface 16SoundsUSB from IntRoLab is employed [37]. It is a purpose-built 
external sound interface with 16 synchronized USB audio inputs. It can capture multi-
channel audio synchronously with no time delay present between different channels, 
which allows the calculation of inter-channel time differences of arrival directly from the 
captured data. This makes it highly applicable to our case scenario. 

B. Processing Unit 
A laptop with 8 GB of RAM and a 1 GHz Processor running on Windows 10 is used as a 
processing unit. The data acquisition toolbox of MATLAB 18b, along with the sound card 
support, enables the acquisition of the audio signal. The signal is sampled at 44.1 kHz and 
fed to the trained classifier to detect the acoustic gunshot signatures. Once a positive flag 
is raised, the acoustic data is sent to the localization module to estimate elevation and 
azimuth angles. 

 
Fig. 3. Experimental Test-bed. 

 

5. RESULTS AND DISCUSSION 
A. Validation Scheme 

k- fold cross-validation [38] is used to train and test the classifiers. This validation scheme 
was selected since it is suitable when the data set size is not considerably large. In a k-fold 
cross-validation scheme, the data set is randomly split up into k groups (or folds). Then, 
for each unique group, the group is taken as a test set while the remaining k-1 groups 
comprise the training set. The model is trained on the training data set and evaluated on 
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the test data set, thereby resulting in k-1 training of the model. The value of k is 10 in this 
study. 

B. Performance Metrics 
To quantify the detection performance of the proposed system, the accuracy, sensitivity, 
and specificity are computed. In the proposed system's scenario, the sensitivity (also 
termed as True Positive Rate (TPR) or Recall) is a measure of the proportion of actual 
gunshot sounds predicted as gunshots. Whereas the specificity (also termed as a True 
Negative Rate (TNR)) is defined as the proportion of non-gunshot acoustics (i.e., the 
environmental sounds) that got predicted as non-gunshot sounds. These performance 
metrics are calculated as, 

Accuracy=((TP+TN)/(TP+TN+FP+FN))*100 

Sensitivity or TPR=TP/(TP+FN) 

Specificity or TNR=TN/(TN+FP) 

where TP is True Positive, which means a gunshot sound is classified correctly as a 
gunshot sound; TN is True Negative, i.e., an environmental sound is classified correctly as 
an environmental sound; FP is False Positive, meaning an environmental sound is 
erroneously classified as a gunshot sound; and FN is False Negative, i.e., a gunshot sound 
is classified incorrectly as an environmental sound. 

C. Feature Selection and Simulation Results 
To assess the contribution of extracted features towards the acoustic gunshot 
classification, Table IV presents the 10-fold cross-validation results in terms of accuracy, 
sensitivity (TPR), and specificity (TNR) for every possible combination of the extracted 
features. It can be observed that the ensemble bagged tree classifier generally performs 
better for acoustic gunshot classification problems in terms of performance metrics in 
comparison to the best performing Quadratic kernel-based SVM. In terms of feature 
contribution when employed in isolation, a classifier trained on the GTCC feature set has a 
maximum classification accuracy of 96.3%, as highlighted in Table IV. However, the 
maximum observed classification accuracy results when features are combined together. 
As highlighted in Table IV, it can be observed that the best model for gunshot acoustic 
detection is trained on the combination of LPC, MFCC and GTCC features and has the 
highest classification accuracy of 97.3% with a sensitivity of 0.978 and specificity of 
0.988. 

D. Discussion 
One of the central problems in ML-based systems is the performance of the classification 
model in different noise conditions and generalization to other databases in out-of-sample 
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testing. Table V presents the performance of the bagged tree ensemble classifier under 
different SNR settings. It can be seen that the LPC based model underperforms in 
comparison to the GTCC and MFCC based models. For -15 db and -20 db, both GTCC 
and MFCC based models were similarly effective. However, GTCC based model provides 
significantly better results than the MFCC based model at -10 db and 0 db. Finally, the 
model trained on all three features, LPC, MFCC and GTCC, proves to be robust and 
performs equally well under different noise levels. 

Table 4: Classifier Performance: 10-fold Cross-Validation of Bagged Tree Ensemble and Quadratic SVM 
Classifier for Different Combinations of Features. 

Classifiers Bagged Tree Ensemble Quadratic SVM 
Features Acc. % TPR TNR Acc. % TPR TNR 
SC 66.5 0.352 0.769 55.7 0.404 0.608 
LPC 92.5 0.868 0.944 74.8 0.504 0.997 
MFCC 93.9 0.868 0.963 86.0 0.796 0.881 

GTCC 96.3 0.892 0.987 87.9 0.864 0.884 
SC, LPC 92.4 0.852 0.948 79.2 0.580 0.863 
SC, MFCC 95.9 0.900 0.979 89.0 0.876 0.895 
SC, GTCC 95.5 0.884 0.979 90.9 0.912 0.908 
LPC, MFCC 96.2 0.916 0.977 89.5 0.880 0.900 
LPC, GTCC 96.6 0.920 0.981 90.9 0.896 0.913 
MFCC, GTCC 96.1 0.864 0.993 88.6 0.860 0.895 
SC, LPC, MFCC 95.3 0.888 0.975 91.2 0.884 0.921 
SC, LPC, GTCC 96.0 0.896 0.981 92.6 0.924 0.927 
SC, MFCC, GTCC 96.5 0.888 0.991 91.1 0.908 0.912 

LPC, MFCC, GTCC 97.3 0.978 0.988 90.8 0.888 0.915 
All Features 95.9 0.916 0.973 92.1 0.920 0.921 

Table 5: Performance of Bagged Tree Ensemble Classifier for Different Noise Levels. 

Features 
SNR = -10  SNR = -15  SNR = -20  
Acc. 
% 

TPR TNR 
Acc. 
% 

TPR TNR 
Acc. 
% 

TPR TNR 

LPC 91.9 0.96 0.91 79.9 0.53 0.89 74.6 0.27 0.91 
MFCC 92.2 0.98 0.90 89.4 0.82 0.92 86.3 0.75 0.90 
GTCC 95.9 0.98 0.95 89.9 0.81 0.93 86.3 0.74 0.91 
LPC, MFCC, 
GTCC 

97.0 0.95 0.98 96.4 0.89 0.99 96.1 0.88 0.99 
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Table 6: Performance Comparison of the Proposed Method with Related Gunshot detection and 
Classification Method. 

Method Features Classification 
Technique TPR 

2013, Ahmed et al. [21] LPC Linear-SVM 97.0% 

2018, Hrabina et al. [12] Scarcely used time domain 
features Neural Network 82.2% 

2020, Bajzik et al. [18] Spectrograms VGG-16 95.8% 
2020, Papadimitriou et al. 

[19] Spectrograms 2D-CNN 93.0% 

2021, Sigmund et al. 
[14] 

MFCC and time domain 
features Neural Network 95.0% 

2021, Rahman et al. [23] Antilog energy features SVM and KNN 93.1% 

Proposed LPC, MFCC, GTCC Bagged Tree 
Ensemble 97.8% 

 
Fig. 4. Training and test error of the best trained classifier. 

A well-fitted and generalized model is neither under-fitted nor over-fitted. To find 
behavior and the generalization of the best-trained model, i.e., the bagged tree ensemble 
classifier trained on LPC, MFCC and GTCC features, the test and training learning curves 
are computed (depicted in Fig. 4) to observe the bias-variance trade-off. The low bias, as 
reflected by the low training error in Fig. 4, indicates the model is well-fitted to the data. 
Further, the low test error and variance also indicate that the model does not over-fit the 
data. Therefore, it can be inferred that the trained model is well generalized. The same can 
also be concluded from the receiver operating characteristics (ROC) curve, where the 
AUC value of 0.99 is attained, reflecting that the trained model can distinguish between 
the gunshot and other noises. 
Finally, the proposed method performance compared with similar acoustic gunshot 
detection techniques is summarized in Table VI. However, due to the utilization of  the  
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Table 7: An Overview of Field Tests ( Θ = Azimuth, Θ= Elevation). 
Firearms Observed (Θ, θ) Actual (Θ, θ) 
SIG Sauer P226 1◦, -43◦ 0◦, -45◦ 
SIG Sauer P226 62◦, -43◦ 60◦, -45◦ 
SIG Sauer P226 -61◦, 1◦ -60◦, 0◦ 
SIG Sauer P226 89◦, 1◦ 90◦, 0◦ 
SIG Sauer P226 -92◦, 9◦ -90◦, 10◦ 
SIG Sauer P226 -178◦, 9◦ 180◦, 10◦ 
G3 2◦, 13◦ 0◦, 15◦ 
G3 57◦, 13◦ 60◦, 15◦ 
G3 -59◦, 13◦ -60◦, 15◦ 
G3 92◦, 13◦ 90◦, 15◦ 
G3 -87◦, 13◦ -90◦, 15◦ 
G3 -177◦, 13◦ 180◦, 15◦ 
MP5 0◦, 28◦ 0◦, 25◦ 
MP5 62◦, 28◦ 60◦, 25◦ 
MP5 -57◦, 28◦ -60◦, 25◦ 
MP5 88◦, 28◦ 90◦, 25◦ 
MP5 -93◦, 28◦ -90◦, 25◦ 
MP5 179◦, 28◦ 180◦, 25◦ 
M4 Carbine 1◦, -21◦ 0◦, -20◦ 
M4 Carbine 59◦, -21◦ 60◦, -20◦ 
M4 Carbine -61◦, 14◦ -60◦, 15◦ 
M4 Carbine 88◦, 14◦ 90◦, 15◦ 
M4 Carbine -91◦, 31◦ -90◦, 30◦ 
M4 Carbine -179◦, 31◦ 180◦, 30◦ 
AK-47 -3◦, -7◦ 0◦, -5◦ 
AK-47 61◦, -7◦ 60◦, -5◦ 
AK-47 -59◦, 14◦ -60◦, 15◦ 
AK-47 92◦, 14◦ 90◦, 15◦ 
AK-47 -89◦, 30◦ -90◦, 30◦ 
AK-47 178◦, 30◦ 180◦, 30◦ 
SSG 69 3◦, 59◦ 0◦, 60◦ 
SSG 69 60◦, 59◦ 60◦, 60◦ 
SSG 69 -61◦, 59◦ -60◦, 60◦ 
SSG 69 91◦, 59◦ 90◦, 60◦ 
SSG 69 -88◦, 59◦ -90◦, 60◦ 
SSG 69 -180◦, 59◦ 180◦, 60◦ 

 
different databases, a one-to-one comparison should be avoided. Further, most of the 
gunshot acoustic detection-related works have not reported their results quantitatively. 
Therefore, only a few methods are reported in Table VI for contrast and comparison.  It 
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can be observed that the proposed method performs better than the other techniques for 
acoustic gunshot detection and classification, as indicated by the TPR (sensitivity) values. 
The better performance of the proposed method compared to similar hand-crafted feature-
based techniques [12, 14, 21, 23] is due to the utilization of the GTCC feature, which 
establishes the efficacy of the GTCC feature descriptor for gunshot event detection and 
classification. Interestingly, the DL-based techniques [18, 19] do not outperform the 
proposed method. One plausible reason for this observation could be the limited 
availability of gunshot audio databases, which is critical for training DL algorithms. 

E. Real-time Localization results in real environment 
Field tests were performed to assess the real-time performance of the proposed system and 
its localization accuracy in a real environment. For this purpose, multiple rounds were 
fired from SIG Sauer P226, MP5, G3, AK47, M4, SSG 69 and Dragunov firearms in a 
secured open environment with a distance of 50-1000 meters. While the system 
successfully detected the fired gunshots, an average error of ±3° is observed in 
localization, as shown in Table VII. This accuracy is well within the range of acceptable 
accuracy for real-time sound source localization [39]. Further, the system takes an average 
of 0.7-1 seconds to detect and localize the gunshots. 

6. CONCLUSION 
In this paper, efficient real-time gunshot detection and shooter localization system is 
proposed. The system can efficiently detect and localize a gunshot with an accuracy of 
97.3% under ideal conditions. The unavailability of real-time performance evaluation of 
gunshot detection and localization in previously proposed systems is addressed by 
evaluating the proposed system on an experimental test-bed and conducting field tests. 
The well-fitted classifier model reflects that law enforcement agencies can use the 
proposed system for maintaining law and order. Future works will be aimed toward multi-
shot detection and localization of a moving threat. 
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