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ABSTRACT

The management and prioritization of network traffic to ensure the efficient transmission of
important data is achieved through Quality of Service (QoS) technologies and techniques. QoS
facilitates allocating necessary resources and bandwidth to critical applications and services
while de-prioritizing less important traffic. This is accomplished by classifying and marking
packets. Task scheduling involves coordinating and managing the execution of tasks in a
computer system or network, including allocating resources and determining the order in
which tasks are executed. Task scheduling algorithms use priority, resource requirements, and
task dependencies to determine the most efficient way to execute tasks. A heterogeneous cloud
environment utilizes multiple cloud computing platforms from different vendors such as IaaS,
Paa$S, and SaaS to deliver services and optimize cost, performance, and scalability. The task
scheduling problem in cloud computing involves effectively mapping workloads to virtual
resources. The study introduces the genetic-based algorithm BGA to increase makespan and
resource consumption, while SGA focuses on convergence speed. These strategies are
compared with current meta-heuristic and heuristic techniques.
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1. INTRODUCTION

Cloud computing consists of providing computing facilities such as servers, storage, databases,
networking, and intelligence over the Internet, also known as "the cloud". This delivery method offers
benefits such as quicker innovation, adaptable resources, and cost savings through economies of
scale. Users can access these services from anywhere in the world, on any device with an internet
connection, and only pay for what they use [1]. This eliminates the necessity for institutions to invest
in and maintain expensive hardware and infrastructure, allowing them to focus on their core business.
Cloud computing has several deployment models, including public clouds, operated by third-party
providers and offering resources to the general public [2]; private clouds, functioned by a sole
organization for its usage; and hybrid clouds, a combination of public and private clouds.

Cloud computing technology encompasses various services, including Infrastructure as a Service,
that offer virtual computing resources, such as virtual machines and storage. Platform as a Service
provides a platform for developing, operating, and managing applications and services without
having to create and maintain the underlying infrastructure. Software as a Service (SaaS) delivers
applications over the Internet, enabling users to access software through a web browser [3]. Function
as a Service (FaaS) allows running code snippets or functions in response to events without managing
infrastructure. Data as a Service (DaaS) provides data-related services, including databases, big data
processing, and analytics.

1.1. STAKEHOLDERS IN CLOUD

These technologies are powered by distributed computing, virtualization, and automation, making it
possible for organizations to access and use large-scale computing resources as needed. Cloud
services are offerings provided by cloud computing providers to their clients on the internet. Some
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common types of cloud services include Compute services like virtual machines, containers, and
server-less computing [4, 5]. Database services like relational databases, NoSQL databases, and
managed data services. Networking services like virtual private networks, content delivery networks,
and domain name systems. Security services like identity and access management, data encryption,
and threat protection. Analytics services like data warehousing, big data processing, and business
intelligence. Artificial Intelligence and Machine Learning services, Integration and management
services like API management, integration with on-premise systems, and multi-cloud management.
Customers can choose and subscribe to these services as per their requirements and only pay for what
they use, making it a cost-effective way to access and utilize technology [6, 7]. The cloud
stakeholders and their relation are shown in Figure 1.

Service Service
Provider Consumer

Cloud Broker
Figure 1: Clouds Stakeholders

The characteristics of cloud services include [8, 9]:
e On-demand self-service: a feature that allows customers to get computing resources
whenever they need them, without needing to communicate with a human representative from
the service provider.
e Broad network access: enables access to cloud services one can access it from any device
as long as one has an internet connection.
e Rapid elasticity: enables customers to quickly scale up or down the number of resources
they use, in response to changing demand.
e Measured service: provides usage-based billing, allowing customers to only pay for what
they use.
e Scalability: one can manage larger amounts of work by adding more resources when they
need them, and removing resources when they don't need them anymore.
o Reliability: ensures that services are highly available and durable, with multiple copies of
data stored across multiple locations.
Cloud services are very flexible, scalable, and cost-effective. They allow organizations to concentrate
on their main business deeds rather than dealing with complicated IT infrastructure.

1.2. HETEROGENEOUS DISTRIBUTED COMPUTING

Heterogeneous Distributed Computing refers to a system where different types of computing devices,
such as servers, laptops, mobile devices, and edge devices, are connected and work together to solve
a problem [10]. These devices have different hardware configurations, operating systems, and
capabilities, making the system heterogeneous. In heterogeneous distributed computing, each device
can contribute its processing power and storage, enabling the system to perform complex tasks more
efficiently and quickly than a single device could [11]. The devices can be located in different
locations, and connected over a network, such as the internet. Heterogeneous distributed computing
is commonly used in areas like scientific research, processing, and cloud computing, where large
amounts of required in time processing [12]. It provides the ability to scale processing power and
storage as needed and enables organizations to take advantage of the processing power of devices
across their network.

1.3 SCHEDULING ISSUES
Scheduling issues include Load balancing: - distributing workloads evenly across available resources
to confirm the efficient utilization of resources. Resource allocation determines which resources
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should be assigned to which tasks, taking into account factors such as processing power, storage
capacity, and network bandwidth [5, 8-10]. Task prioritization determines which tasks should be
given priority and executed first, based on factors such as deadline, importance, and resource
requirements. Resource utilization optimization maximizes the use of available resources to ensure
that computing resources are used efficiently and effectively [13]. Fault tolerance ensures that the
system continues to operate even in the event of resource failures or other disruptions. Resource
negotiation negotiating with other systems or providers for additional resources as needed, to meet
changing demands.
To address these scheduling issues, various algorithms and techniques have been developed,
including static scheduling, dynamic scheduling, and meta-scheduling [14]. Scheduling issues in
cloud computing virtual machines refer to the challenges of allocating and managing virtual machines
(VMs) effectively in a cloud environment [15]. Some of the common scheduling issues in cloud
computing VMs include [16, 17]:

e Overloading: ensuring that VMs are not overloaded with too many tasks, which can lead

to reduced performance and increased downtime.

e Resource allocation: determining how much computing power, memory, and storage to

give to each virtual machine (VM)

e Task prioritization: deciding which VMs should be given priority and receive the most

resources, based on factors such as deadline, importance, and resource requirements.

e Energy efficiency: optimizing the utilization of computing to reduce energy usage and

improve sustainability.

e Resource utilization optimization: making sure that VMs are using resources effectively

and efficiently.

e Load balancing: distributing workloads evenly across available resources to avoid

overloading any single resource.

e Fault tolerance: ensuring that VMs continue to operate even in the event of failures or other

disruptions.

e To address these scheduling issues, various algorithms and techniques have been

developed, including dynamic scheduling, resource allocation, and task prioritization

algorithms.

1.4 TAXONOMY OF TASKS

A taxonomy of tasks in cloud computing virtual machines (VMs) refers to a classification system
that groups tasks into categories based on common characteristics. The purpose of a task taxonomy
is to provide a systematic way of understanding the different types of tasks that can be run on cloud
VMs [18, 19]. Some types of schedulers in cloud environments and their techniques for task
scheduling are shown in Figure 2. Batch processing: tasks that run and require a huge amount of
computing resources. Examples include data processing, scientific simulations, and image rendering.
Interactive applications: tasks that require rapid response times and are executed in real-time.
Examples include web applications, mobile apps, and gaming. Big data processing: tasks that involve
processing large amounts of data, and utilization of technology like Hadoop and Spark. Machine
learning: tasks that involve training machine learning models and running predictions. High-
performance computing: tasks that require high performance in a reasonable resource. Low-latency
tasks: tasks that require low response times and are executed in real-time. Examples include network
protocols and streaming applications. Microservices tasks that are executed as small, independent
services that communicate with other services over a network. This taxonomy can be used as a basis
for designing and implementing cloud computing VM scheduling algorithms and techniques, and for
choosing the appropriate type of VM for a given task [20].

1.5 META-HEURISTIC ALGORITHMS
Evolutionary algorithms (EAs) are a type of computer program that helps solve optimization
problems by simulating the process of natural selection and evolution, which occur in biology. Eas
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Figure 2: Some Type of Schedulers in Cloud Environment and Their Techniques for Tasks
Scheduling
are used for the solution of complex issues by simulating the procedure of evolution, including
reproduction, mutation, and selection. Some common characteristics of evolutionary algorithms
include Population-Based: EAs operate on a population of potential solutions, called individuals,
rather than a single solution. Fitness-based selection of individuals with higher fitness scores.
Reproduction and variation reproduction and variation operators are used to generate new
individuals, which can then be evaluated for fitness and added to the population. Repeat until
Convergence is the process of selection, reproduction, and variation is repeated up to the conditions
either s satisfying solution is established or an execution criterion is met [21].
T * re being used in a large range of optimization problems, which include scheduling, resource
tion, and machine learning. Some popular EA algorithms include Particle Swarm Optimization
and Genetic Algorithms (GA) EAs are good for problems with large search spaces, complex
constraints, and uncertain or noisy fitness functions [22].

2. RELATED WORK

A variety of strategies are under the use of cloud computing for autonomous task scheduling [23].
The chapter on the literature review extensively examines all conceivable relevant methodologies,
which might be heuristic, meta-heuristic, or hybrid.

2.1 HEURISTICS ALGORITHMS

Heuristics algorithms are a type of problem-solving method that uses intuition and experience-based
knowledge to find a solution. Heuristics algorithms are used for various problems, including resource
allocation, load balancing, and quality of service (QoS) management. One study that focuses on
heuristics algorithms for QoS management in cloud computing is [24]. The algorithm uses an
adaptive mutation strategy to balance the trade-off between resource utilization and service quality.
Another study focuses on heuristics algorithms for cloud computing [25]. The authors proposed an
algorithm which is a hybrid heuristic that combines the GA and PSO to allocate resources in cloud
computing. The algorithm uses an adaptive mutation strategy to balance the trade-off between
resource utilization and service quality. Heuristics algorithms are mostly used in cloud computing for
the solution of different problems, including load balancing, and QoS management. The studies
discussed in this review show that heuristics algorithms can effectively optimize resource utilization
and service quality in cloud computing. Heuristics algorithms are problem-solving methods that use
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intuition and experience-based knowledge to find solutions, making them well-suited to the dynamic
and complex environment of cloud computing. One of the earliest studies that focuses on heuristics
algorithms for cloud computing [26-28]. The algorithm uses the adaptive mutation strategy to balance
the trade-off between resource utilization and service quality. Since then, many researchers have
explored the use of heuristics algorithms in cloud computing, including load balancing and QoS
management. For example [29, 30], the authors proposed an algorithm called a hybrid heuristic that
combines the PSO and GA optimization to allocate resources in the field of cloud computing. In these
years, the rallying on using heuristics algorithms in cloud computing to handle big data has increased.
For example [31, 32], the authors proposed a heuristics algorithm for big data resource allocation in
cloud computing that handle both computational resources and network resources. These algorithms
used an adaptive mutation strategy to balance the trade-off between resource utilization and service
quality [33]. With the increasing demand for cloud computing to handle big data, the usage of
heuristics algorithms in the field of cloud computing is expected to continue to grow [34].

2.2 META-HEURISTICS ALGORITHMS

Meta-heuristics algorithms are a class of optimization algorithms that are commonly uses in the field
of cloud computing to solve the problem of resource allocation and management. Meta-heuristics
algorithms are flexible and scalable, making them well-suited to the dynamic and complex
environment of cloud computing. One of the earliest studies that focuses on meta-heuristics
algorithms for cloud computing [34-36]. One of the researchers proposed an algorithm called meta-
heuristics for better allocation of all concerned resources. The algorithm combines the simulated
annealing and PSO for better service quality and utilization of the resources. Results shows the
performance of meta-heuristic algorithm is improving in term of utilization of the resources and
service quality. The researcher proposes a hybrid meta-heuristics algorithm that combines the GA
and optimization of the ant colony for allotment of the cloud computing resources. The algorithm
considers the QoS and utilization of the resources, The results depicts that the proposed algorithm
performance is improved as per another algorithm.

In this era, task scheduling techniques have become increasingly important in cloud computing. As
cloud computing continues to evolve and become an integral part of many businesses, research on
task scheduling techniques has grown. In this review, we will discuss the major advances in task
scheduling techniques from 2010 to 2022 and their impact on cloud computing. In 2010, research on
task scheduling techniques focused on improving the output of existing systems. Some researchers
suggested methods for task scheduling that were based on the utilization of multiple cores and grid
computing. These techniques were able to upgrade the performance of existing techniques by
optimizing the utilization of resources and improving the scalability of the system. In 2012, research
began to shift towards developing new techniques for task scheduling that could better utilize the
cloud computing environment. This involved developing techniques such as resource virtualization,
dynamic resource allocation, and multi-objective optimization. These techniques allowed cloud
computing systems to better utilize the available resources and achieve higher levels of scalability
[37]. In 2014, research began to focus on developing techniques that could improve the security of
cloud computing systems. This involved developing techniques such as authentication and
authorization management, secure scheduling of the tasks, and secure allocation of the resources.
These techniques allowed cloud computing systems to better protect their data from malicious
attackers and better manage the access of users to resources [38]. In 2016, research began to focus
on developing techniques that could improve the QoS of cloud computing systems. This included
developing techniques for QoS-based task scheduling, adaptive allocation of the resources, and
online scheduling of the tasks. These techniques allowed cloud computing systems for better
prioritize tasks based on their importance and to dynamically adjust the resources allocated to tasks
based on their current demands [39]. In 2018, research began to focus on developing techniques that
would allow cloud computing systems to better manage large-scale data processing. This included
developing techniques such as graph-based scheduling, machine learning-based scheduling, and
distributed scheduling. These techniques allowed cloud computing systems to efficiently process
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large amounts of data and to make good use of their available resources [39]. In 2020, research began
to focus on developing techniques that would allow cloud computing systems to better manage their
workloads. This included developing techniques such as self-adaptive scheduling, predictive
scheduling, and application-level scheduling. These techniques allowed cloud computing systems to
better predict the demands of their workloads and to automatically adjust the resources allocated to
them to maximize efficiency. In 2022, research is focusing on developing techniques that could better
manage the interactions between cloud computing systems and their users.

This includes developing techniques such as user-level scheduling, resource-level scheduling, and
user-oriented scheduling. These techniques allow cloud computing to understand the needs of users
and to allocate resources more efficiently [85].

Overall, research on task scheduling techniques has greatly improved the performance level of cloud
computing over the past decade. These techniques have enabled cloud computing for better usage of
its resources, improve its security, and provide better QoS for its users. As cloud computing continues
to evolve, research on task scheduling techniques will continue to remain an important area of

research. The latest techniques are listed in Table 1.
Table 1: Summary of the Some Latest Techniques

Ref# Improvements Stanchness Flaws
Adaptive probability of
Improves makespan. crossover and mutation is Load is imbalanced
3 p P
[8] Introduced.
[27] Reduces probability of failure It has multi-objective Converges pre-maturely Load
and completion time. optimization. balancing not considered.
It has a Greedy Strategy to
[40] Improves makespan and update vectors. The Assessed on a small dataset.
resource utilization. roulette wheel is used as a
selection operator.
The share of each VM is
41 Improves load balancing. calculated based on the Low number of jobs.
p g J
power and size of jobs.
Not compared with other
[19] Improves makespan Tournament selection meta-heuristics.
P pan. operation of GA is used. VM Load balancing is
balanced.
Trapped able in local-minima.
[42] Reduces makespan. Fast Convergence.
. . Two conﬂlcthg obj ectives High probability of mutation
Provides load balancing and are combined in a relation ;
[43] which may lead to pre-mature
reduces makespan. to define fitness as COnversence
minimization function. & )
Improves makespan, resource Vf?lOClt}-/ mn PS(.) is updated .
[44] utilization and using Differential Not evaluated on any big
Converaence Evolution dataset.
& ) Algorithm.
Fittest particle being chosen
does not meet both objects
Improves time and cost of An archive of dominating because its fitness function is
45 prov and non-dominatin not unbiased.
execution &

' particles is maintained. Exploration ability is limited
owing to fittest range
depending on multi-objective.

LCFP and SCFP are used Not colns1d‘ered loafi .
arallel to randomization balancing in the objective
[17] Reduce execution time of jobs. p - function.
for population
Initialization Evaluated on a very small
) dataset.
2.3 DATASET

Two types of datasets we use in our experiments.

2.3.1 SYNTHETIC DATASET

Synthetic test dataset is a dataset created by computer algorithms or programs. The details of the dataset are
shown in Table 2. The data can be generated from real-world data to represent the characteristics of the




UW Journal of Computer Science, Vol. 5

existing dataset. Synthetic test datasets are useful for large-scale experiments or for situations when real-
world data is not available. Four classes in this dataset are include that are as follow:

Class 0: Customers with high income and low spending

Class 1: Customers with low income and high spending

Class 2: Customers with high income and high spending

Class 3: Customers with low income and low spending

Table 2: Synthetic Dataset Jobs
No Size
34304
37849
36347
30933
34976
38501
37059
36504
29606
34944

Al Bl Bl Il Il ad Bl N

_
=4

2.3.2 REALISTIC DATASET

A realistic dataset for scheduling of the task would add-up information about the tasks, like, name of the task,
duration of the task, dependencies of the task, task priority, task resources needed, task due date, and task
completion status. It would also include information about the resources available for completing the tasks,
such as: resource name, resource availability, resource cost, resource location, and resource type. The dataset
should also include information about the environment in which the tasks will be completed, such as: the
current time, the location of the tasks, the current temperature and humidity, and any other environmental
factors that may affect the completion of the tasks. Finally, the dataset should include information about the
people assigned to the tasks, such as: person name, person availability, person skill set, and person work
preferences. The details of the dataset are shown in Table 3.

Table 3: Realistic Dataset

Z
e

Size
83000
95000
91000
81000
27500
49000
103000
95000
47000
71000

Al Il Bl Il el el B N

_
=4

This article defines the exiting problem and later on its improved solution. The data set is given below with
required details. The improved solution is presented for efficient task scheduling. The motive of selecting
logical reasoning and algorithms is to improve the load balancing and makespan while enhancement of speed
convergence of optimization algorithm. Merging of meta-heuristic and heuristic is for improved task
scheduling.

3 EXPERIMENTS AND RESULTS

At first, the experiment to establish the mutation rate of both genetic algorithms is shown. The performance
of both algorithms on synthetic and realistic datasets is then shown, along with the relevant commentary.
Experiments show the duration and resource use of both strategies. Because the batched sizes in both datasets
varied, numerous graphs are created for each batched size. In graphs, the average of all batched for the
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performance indicators is provided individually as well. It is also indicated if the findings of studied
methodologies have improved or declined. On the GoCJ and Synthetic datasets, the makespan of BGA is
evaluated, however in the synthetic dataset, all categories, namely Normal as well left, right and uniform
workload, are used in experiments. Figure depicts the makespan using the GoCJ dataset on batch sizes ranging
from 100-550, with a 50-percentage difference in batched sizes. In most situations, BGA has obtained a
shorter makespan. At batch sizes of 100 & 150, both algorithms are almost identical, however in additional
batched sizes, BGA technique outperforms MGGS, ETA-GA, DSOS, and RALBA. The ETA-GA does not
have a decent makespan as batched size increases, and its results has worsened on batches of more than 300.
Figure 3-5 show the makespan using the GoCJ dataset on batched sized 600-1000. On big batch sizes, the
ETA-GA dropped even further. The BGA has outperformed all benchmark approaches in terms of makespan.
MGGS takes a long time on high batch sizes and improves over time, but BGA still outlasts MGGS. Figure
1 depicts the behavior of the GoClJ in terms of makespan. BGA outperformed RALBA, ETA-GA, DSOS, and
MGGS in terms of average makespan by 33.1, 65.5, 40.4, and 1%, respectively.

400

3500
3000
2500
2000
1500
1000

C el

100 150 200

Makespan (seconds)

250

450 500 550

MBGA  300.0999 407.24279 434 53851 461.54093 638.53955 723.79753 793.57189 854.27769 995.26176 1095.2556
mMGGS 518.43167 890.13405 1090.0982 1226.7629 1290.0946 1333.4284 1303.5368 1423.4671 1380.1338 1575.0977
mETA_GA 406.07183 643.04967 800.0967 942.62894 1348.7956 1584.6491 19375569 2080.4232 2452 8666 2907.4202
oDS0S  379.78251606.20795 737.74248 762.89754 1091.6401 1323.4912 1406.0382 1441.01141679.7605 1750.7339
DRALBA 300.09962 403.22467 468.66922 469.59851 642.54087 733.43043 797.2066 859.25261 997.33029 1101.845

300 350

Number of Cloudlets
=BGA mMGGS mETA_GA mDSOS mRALBA

Figure 1: Makespan on GoCJ 100 to 550
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600 650 700 750 800 850 900 950 1000
=BGA  1256.78341 1350.23768 1335.2621 1556.48044 1509.78408 1621.87988 1830.62172 1804.9516 1976.82824
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mETA_GA 3307.41722 3748.8042 4207.78011 4394 42247 4925.07232 5572.5571 6007.7355 6500.09825 7021.43634
ODSOS  2105.62969 2232.11002 2228.88964 2667.94437 2703.3617 2614.19119 3014.98364 3201.19071 3238 687
ORALBA 1290.98039 1384.61671 1345.29365 1559.8078 1511.25539 1625.86716 1862.09611 1824.87667 1980.764

Number of Cloudlets
=BGA mMGGS mETA_GA pDSOS pRALBA

Figure 2: Makespan on GoCJ 600 to 1000
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Figure 3: Average Makespan on GoCJ

It is calculated for altogether of synthetic datasets with batched sizes ranging from 100-1000 and a difference

of hundred in batched sizes. Figure 6-9 show the results on left-skewed dataset, makespan is usually superior

to other approaches. RALBA has a superior makespan for batch sizes of 100 & 1000, whereas BGA has a

better makespan overall. On average, the BGA outperformed the DSOS, RALBA, MGGS, and ETA-GA by
1000 1

27.3,71.9, 40.5 and 4.6%, correspondingly.
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3000
2500
2000
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100 200 300 400 500 600 700 800 900 1000
=BGA 62351475 117.38123 174.42183 242 23278 289.27466 342.84776 401.8199 463.86156 521.21478 575.02785
mMGGS 2522166 261.50231 267.34607 270.97043 330.87396 389.25962 451.98453 493 40411 556.6783 675.73283
mETA_GA 110.32219 262.95367 40596727 624.65556 886.45384 11225424 1454 8463 1824 5762 2140.9801 2534 1724
oDSOS  116.43259 220.06471 308.05866 415.3196 502.93989 585.66431 709.55849 809.09311 895.84987 950.01217
CRALBA 66.811571 124.1044 223 12667 261.06708294.34254 349.5708 416.01133 483.744 598.60217603.68224

Makespan (seconds)

Number of Cloudlets
=BGA mMGGS mETA_GA mDSOS =RALBA

Figure 6: Average Makespan on Normal
The makespan is calculated for altogether of synthetic datasets with batched sizes ranging from 100-1000 and
a difference of hundred in batched sizes. Figure 9 depicts the study of makespan on makespan on the left-skewed
dataset, is usually superior to other approaches. RALBA has a superior makespan for batch sizes of 100 & 1000,
whereas BGA has a better makespan overall. The graph depicts the regular of all batched sizes. The algorithm
outperformed the DSOS, RALBA, MGGS, and ETA-GA by 27.3, 71.9, 40.5 and 4.6%, correspondingly. Figure
10 depicts the makespan analysis on a right-skewed dataset.
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Figure 7: Makespan on Uniform Dataset

4.1 ARUR

The ARUR are a metric used to calculate resources consumption. BGA's improvement is evaluated first on both
datasets (GoCJ and Synthetic). Figure 7 showing the ARUR of proposed and other approaches on the both
dataset for batched sizes ranging from 100 to 550, with a batch size alteration of 50. On batch sizes 100 and
200, RALBA has a decent ARUR, however BGA excels on larger batched sizes. Figure 11 showing the ARUR
analysis on the GoCJ dataset with batch sizes ranging from 600 to 1000. Figure 11 shows that BGA improves
ARUR by 30, 80.4, 83.1, and 0.5% when compared to RALBA, ETA-GA, DSOS, and MGGS. On the GoCJ
dataset, the BGA offers adequate load balancing for high batch sizes.

1.2
1

08

ARUR(-1)

150 200 250 300 350 400 450 500 550

=BGA 0.5592667 0.7016538 0.8960508 0.9657226 0.9729228 0.9785577 0.9834604 0.9803559 0.9819342 0.9866485
mMGGS 0.4591557 0.5425474 0.5076553 0.5163084 0.5894706 0.6584958 0.7145103 0.704094 0.7919877 0.763281
mETA_GA 0.438154 0.528499 0.5721497 0.5759192 0.5635135 0.5805777 0.5487288 0.5427888 0.571012 0.5533003
o DSOS 0.3864666 0.4274447 0.4653618 0.4625754 0.5096391 0.4727453 0.5302755 0.5459487 0.5302489 0.5272896
CIRALBA 05914664 0.7545834 0.8566664 0.963557 0.9714607 0.9683129 0.9773694 0.9680769 0.9874635 0.9801885

Number of Cloudlets
=BGA mMGGS mETA_GA D1DSOS =RALBA

Figure 8: ARUR on GoCJ 100 to 550
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The examination on a left-skewed dataset for ARUR demonstrates that BGA increases resource consumption
considerably on high batch sizes. Below figures shows the ARUR for batched sizes 100 - 1000, whereas, it is

clear that BGA outperforms RALBA, ETA-GA, DSOS, and MGGS in terms of ARUR by 15.2, 77, 60.6, and
5.4%, respectively.

Figures 11 and 12 show the behaviour of BGA and further approaches on a homogenous datasets. BGA
improves across all batched sizes. In comparison to DSOS, ETA-GA, MGGS, and RALBA, the percentage of
improvement in makespan is 19.2, 71.9, 42.1, and 6.7%, respectively.
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Figure 9: ARUR on GoCJ 600 to 1000
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4.2 SGA

The operation of the SGA has previously explained in literature review. SGA is useful when a meta-heuristic
scheduler is necessary, the key focus here is improving GA's convergence speed. To employ this algorithm is
previously covered in previous Section. Only meta-heuristics and SGA may be compared for convergence
analysis. The fitness value is often compared on correctly applied approach improves through iterations.
Because the provided approach is independent, and the demonstration of fitness value differs from that of
previous methods. As a result, the approaches cannot be associated in terms of fitness. SGA's fitness function

Figure 18: Average of ARUR on Uniform

is intended to enhance load balance. The primary goal of SGA is to accelerate GA convergence.
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A.  Makespan
Figures 26-35 demonstrations the makespan’s convergence rate across a batch of 500 jobs on the given dataset.

It demonstrates that proposed algorithm has a faster convergence rate than ETA-GA and DSOS. Figure 24
depicts the makespan on jobs of 1000 of the GoCJ. On huge batch sizes, ETA-GA meets relatively slowly, other

side SGA is the quickest of all.
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B. ARUR

Figures 36-45 depict ARUR analysis on GoClJ datasets for batches of 500 - 1000, respectively. SGA outperforms

ARUR considerably. SGA converges quicker than other approaches on typical datasets for batches of 500 and
100, as illustrated in Figures. SGA beats ARUR on the even dataset at batched size 500, however DSOS and ETA-
GA are quite close. The difference in ARUR value is substantial in batch size 1000, and the SGA converges

quickly once more. Figures 39 demonstrate this.
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5. SIGNIFICANCE AND NOVELTY OF PROPOSED WORK

The significance of the proposed work lies in its comprehensive exploration of task scheduling optimization, the
introduction of a genetically based algorithm, the emphasis on meta-heuristic approaches, and the evaluation
against existing techniques. The focus on QoS criteria and the use of diverse datasets contribute to the practical
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relevance and novelty of the research. The proposed work holds significant importance and novelty in the field
of cloud computing for several reasons:

5.1 OPTIMIZATION OF TASK SCHEDULING

The work addresses a crucial challenge in cloud computing, specifically the optimization of task scheduling.
Efficiently allocating workloads to virtual resources is a fundamental concern due to the diversity of professions
and their unique resource requirements.

5.2 HEURISTIC AND META-HEURISTIC SCHEDULERS
The study explores the use of heuristic and meta-heuristic schedulers for mapping independent jobs. This is
essential given the variety of alternative mappings required to cater to different professions and resource needs.

5.3 GENETICALLY BASED ALGORITHM
The introduction of a genetically based algorithm adds novelty to the research. This algorithm aims to enhance
both makespan and resource consumption, indicating a holistic approach to task scheduling optimization.

5.4 ALGORITHM COMPARISON AND EVALUATION

The proposed work compares the genetically based algorithm with the SGA (second algorithm) and several
existing heuristic techniques. This comparative analysis provides insights into the strengths and weaknesses of
different scheduling strategies.

5.5 FOCUS ON CONVERGENCE SPEED

The consideration of convergence speed in the SGA highlights a nuanced approach to algorithm design. This is
crucial in real-world applications where the efficiency of scheduling algorithms can significantly impact system
performance.

5.6 META-HEURISTIC ADOPTION EMPHASIS

The work strongly emphasizes the importance of adopting meta-heuristic approaches. Meta-heuristics, with their
ability to explore a vast solution space, are recognized as valuable tools for addressing the complexities of cloud
task scheduling.

5.7 QOS CRITERIA

The thesis concentrates on two critical Quality of Service (QoS) criteria, namely makespan and resources used.
This focus on QoS criteria is essential for defining optimal mappings and ensuring that the proposed scheduling
strategies align with performance objectives.

5.8 SYNTHETIC AND REALISTIC DATASETS
To validate the functionality of the proposed methodologies, the use of both synthetic and realistic datasets
enhances the robustness and applicability of the research findings to practical scenarios.

6. CONCLUSION AND FUTURE WORK

In the field of cloud computing, the problem of task scheduling necessitates the effective plotting of workloads
to virtual resources. Because of diversity of professions and needed resources, there are several alternative
mappings. To map independent jobs, heuristic and meta-heuristic schedulers are used. The meta-heuristic has the
capacity to search the vast universe of promising results. The genetically based algorithm introduced in study in
order to increase the makespan and needed resource consumption. The second algorithm (SGA), is concerned with
convergence speed. The strategies given are compared to several current both heuristic techniques. Other genetic
optimization based approaches are assessed in conjunction with the described methodologies as well. To learn
how the provided methodologies function, synthetic and realistic datasets are used.

* For optimum scheduling, heuristic, meta-heuristic, and hybrid approaches are thoroughly studied.

» The importance of meta-heuristic adoption is strongly emphasised.

» The effectiveness of a genetically based evolutionary strategy in meta-heuristics is demonstrated.
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* This thesis focuses on two of the most important QoS criteria, namely makespan and resources used, in order
to define optimal mapping.

Future work in the field of cloud computing task scheduling could build upon the current research by addressing
the following areas:

o Investigate the potential of hybrid algorithms that combine the strengths of heuristic, meta-heuristic, and
genetically based approaches. This exploration could lead to more robust and adaptable scheduling strategies.

e Extend the research to handle dynamic workloads in real-time. Developing algorithms that can adapt to
changing workload conditions and resource availability would enhance the practical applicability of the scheduling
system.

o Integrate energy efficiency as a key criterion for task scheduling. Future work could focus on algorithms that
not only optimize makespan and resource usage but also minimize energy consumption, contributing to
environmentally sustainable computing.

e Explore the integration of machine learning techniques to predict workload patterns and resource demands. This
could enable more proactive and anticipatory scheduling strategies, improving overall system efficiency.

¢ Conduct extensive scalability testing to evaluate the performance of the proposed algorithms in handling large-
scale cloud environments. This would ensure that the scheduling strategies remain effective as the scale of cloud
systems continues to grow.

e Implement the proposed algorithms in a real-world cloud computing environment to assess their practical
feasibility and performance. This could involve collaboration with industry partners to deploy and evaluate the
algorithms in operational cloud platforms.

o Investigate methods for allowing users to customize the scheduling algorithms based on their specific
requirements and priorities. Providing a level of customization could enhance the adaptability of the system to
diverse user needs.

o Integrate security and privacy considerations into the scheduling algorithms. Future work could explore
methods for ensuring secure and private task scheduling, especially in multi-tenant cloud environments.

o Explore the compatibility of the proposed algorithms with different cloud platforms and architectures. Ensuring
cross-platform adaptability would make the scheduling strategies applicable in a variety of cloud computing
environments.

e Establish a continuous benchmarking process to monitor the performance of scheduling algorithms over time.
This would involve updating algorithms based on evolving workload patterns and technological advancements.
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