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ABSTRACT  

The management and prioritization of network traffic to ensure the efficient transmission of 
important data is achieved through Quality of Service (QoS) technologies and techniques. QoS 
facilitates allocating necessary resources and bandwidth to critical applications and services 
while de-prioritizing less important traffic. This is accomplished by classifying and marking 
packets. Task scheduling involves coordinating and managing the execution of tasks in a 
computer system or network, including allocating resources and determining the order in 
which tasks are executed. Task scheduling algorithms use priority, resource requirements, and 
task dependencies to determine the most efficient way to execute tasks. A heterogeneous cloud 
environment utilizes multiple cloud computing platforms from different vendors such as IaaS, 
PaaS, and SaaS to deliver services and optimize cost, performance, and scalability. The task 
scheduling problem in cloud computing involves effectively mapping workloads to virtual 
resources. The study introduces the genetic-based algorithm BGA to increase makespan and 
resource consumption, while SGA focuses on convergence speed. These strategies are 
compared with current meta-heuristic and heuristic techniques. 
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1. INTRODUCTION  
Cloud computing consists of providing computing facilities such as servers, storage, databases, 
networking, and intelligence over the Internet, also known as "the cloud". This delivery method offers 
benefits such as quicker innovation, adaptable resources, and cost savings through economies of 
scale. Users can access these services from anywhere in the world, on any device with an internet 
connection, and only pay for what they use [1]. This eliminates the necessity for institutions to invest 
in and maintain expensive hardware and infrastructure, allowing them to focus on their core business. 
Cloud computing has several deployment models, including public clouds, operated by third-party 
providers and offering resources to the general public [2]; private clouds, functioned by a sole 
organization for its usage; and hybrid clouds, a combination of public and private clouds.  
Cloud computing technology encompasses various services, including Infrastructure as a Service, 
that offer virtual computing resources, such as virtual machines and storage. Platform as a Service 
provides a platform for developing, operating, and managing applications and services without 
having to create and maintain the underlying infrastructure. Software as a Service (SaaS) delivers 
applications over the Internet, enabling users to access software through a web browser [3]. Function 
as a Service (FaaS) allows running code snippets or functions in response to events without managing 
infrastructure. Data as a Service (DaaS) provides data-related services, including databases, big data 
processing, and analytics. 

1.1. STAKEHOLDERS IN CLOUD 
These technologies are powered by distributed computing, virtualization, and automation, making it 
possible for organizations to access and use large-scale computing resources as needed. Cloud 
services are offerings provided by cloud computing providers to their clients on the internet. Some 
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common types of cloud services include Compute services like virtual machines, containers, and 
server-less computing [4, 5]. Database services like relational databases, NoSQL databases, and 
managed data services. Networking services like virtual private networks, content delivery networks, 
and domain name systems. Security services like identity and access management, data encryption, 
and threat protection. Analytics services like data warehousing, big data processing, and business 
intelligence. Artificial Intelligence and Machine Learning services, Integration and management 
services like API management, integration with on-premise systems, and multi-cloud management. 
Customers can choose and subscribe to these services as per their requirements and only pay for what 
they use, making it a cost-effective way to access and utilize technology [6, 7]. The cloud 
stakeholders and their relation are shown in Figure 1. 

 
Figure 1: Clouds Stakeholders 

 
The characteristics of cloud services include [8, 9]: 

• On-demand self-service: a feature that allows customers to get computing resources 
whenever they need them, without needing to communicate with a human representative from 
the service provider. 
• Broad network access: enables access to cloud services one can access it from any device 
as long as one has an internet connection. 
• Rapid elasticity: enables customers to quickly scale up or down the number of resources 
they use, in response to changing demand. 
• Measured service: provides usage-based billing, allowing customers to only pay for what 
they use. 
• Scalability: one can manage larger amounts of work by adding more resources when they 
need them, and removing resources when they don't need them anymore. 
• Reliability: ensures that services are highly available and durable, with multiple copies of 
data stored across multiple locations. 

Cloud services are very flexible, scalable, and cost-effective. They allow organizations to concentrate 
on their main business deeds rather than dealing with complicated IT infrastructure. 

1.2. HETEROGENEOUS DISTRIBUTED COMPUTING 
Heterogeneous Distributed Computing refers to a system where different types of computing devices, 
such as servers, laptops, mobile devices, and edge devices, are connected and work together to solve 
a problem [10]. These devices have different hardware configurations, operating systems, and 
capabilities, making the system heterogeneous. In heterogeneous distributed computing, each device 
can contribute its processing power and storage, enabling the system to perform complex tasks more 
efficiently and quickly than a single device could [11]. The devices can be located in different 
locations, and connected over a network, such as the internet. Heterogeneous distributed computing 
is commonly used in areas like scientific research, processing, and cloud computing, where large 
amounts of required in time processing [12]. It provides the ability to scale processing power and 
storage as needed and enables organizations to take advantage of the processing power of devices 
across their network. 

1.3 SCHEDULING ISSUES 
Scheduling issues include Load balancing: - distributing workloads evenly across available resources 
to confirm the efficient utilization of resources. Resource allocation determines which resources 
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should be assigned to which tasks, taking into account factors such as processing power, storage 
capacity, and network bandwidth [5, 8-10]. Task prioritization determines which tasks should be 
given priority and executed first, based on factors such as deadline, importance, and resource 
requirements. Resource utilization optimization maximizes the use of available resources to ensure 
that computing resources are used efficiently and effectively [13]. Fault tolerance ensures that the 
system continues to operate even in the event of resource failures or other disruptions. Resource 
negotiation negotiating with other systems or providers for additional resources as needed, to meet 
changing demands. 
To address these scheduling issues, various algorithms and techniques have been developed, 
including static scheduling, dynamic scheduling, and meta-scheduling [14]. Scheduling issues in 
cloud computing virtual machines refer to the challenges of allocating and managing virtual machines 
(VMs) effectively in a cloud environment [15]. Some of the common scheduling issues in cloud 
computing VMs include [16, 17]: 

• Overloading: ensuring that VMs are not overloaded with too many tasks, which can lead 
to reduced performance and increased downtime. 
• Resource allocation: determining how much computing power, memory, and storage to 
give to each virtual machine (VM)  
• Task prioritization: deciding which VMs should be given priority and receive the most 
resources, based on factors such as deadline, importance, and resource requirements. 
• Energy efficiency: optimizing the utilization of computing to reduce energy usage and 
improve sustainability. 
• Resource utilization optimization: making sure that VMs are using resources effectively 
and efficiently. 
• Load balancing: distributing workloads evenly across available resources to avoid 
overloading any single resource. 
• Fault tolerance: ensuring that VMs continue to operate even in the event of failures or other 
disruptions. 
• To address these scheduling issues, various algorithms and techniques have been 
developed, including dynamic scheduling, resource allocation, and task prioritization 
algorithms.  

1.4 TAXONOMY OF TASKS 
A taxonomy of tasks in cloud computing virtual machines (VMs) refers to a classification system 
that groups tasks into categories based on common characteristics. The purpose of a task taxonomy 
is to provide a systematic way of understanding the different types of tasks that can be run on cloud 
VMs [18, 19]. Some types of schedulers in cloud environments and their techniques for task 
scheduling are shown in Figure 2. Batch processing: tasks that run and require a huge amount of 
computing resources. Examples include data processing, scientific simulations, and image rendering. 
Interactive applications: tasks that require rapid response times and are executed in real-time. 
Examples include web applications, mobile apps, and gaming. Big data processing: tasks that involve 
processing large amounts of data, and utilization of technology like Hadoop and Spark. Machine 
learning: tasks that involve training machine learning models and running predictions. High-
performance computing: tasks that require high performance in a reasonable resource. Low-latency 
tasks: tasks that require low response times and are executed in real-time. Examples include network 
protocols and streaming applications. Microservices tasks that are executed as small, independent 
services that communicate with other services over a network. This taxonomy can be used as a basis 
for designing and implementing cloud computing VM scheduling algorithms and techniques, and for 
choosing the appropriate type of VM for a given task [20]. 
 
1.5 META-HEURISTIC ALGORITHMS 

Evolutionary algorithms (EAs) are a type of computer program that helps solve optimization 
problems by simulating the process of natural selection and evolution, which occur in biology. Eas 
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Figure 2: Some Type of Schedulers in Cloud Environment and Their Techniques for Tasks 

Scheduling 
are used for the solution of complex issues by simulating the procedure of evolution, including 
reproduction, mutation, and selection. Some common characteristics of evolutionary algorithms 
include Population-Based: EAs operate on a population of potential solutions, called individuals, 
rather than a single solution. Fitness-based selection of individuals with higher fitness scores. 
Reproduction and variation reproduction and variation operators are used to generate new 
individuals, which can then be evaluated for fitness and added to the population. Repeat until 
Convergence is the process of selection, reproduction, and variation is repeated up to the conditions 
either s satisfying solution is established or an execution criterion is met [21]. 
EAs are being used in a large range of optimization problems, which include scheduling, resource 
allocation, and machine learning. Some popular EA algorithms include Particle Swarm Optimization 
and Genetic Algorithms (GA) EAs are good for problems with large search spaces, complex 
constraints, and uncertain or noisy fitness functions [22]. 

2. RELATED WORK   
A variety of strategies are under the use of cloud computing for autonomous task scheduling [23]. 
The chapter on the literature review extensively examines all conceivable relevant methodologies, 
which might be heuristic, meta-heuristic, or hybrid. 
 
2.1 HEURISTICS ALGORITHMS 
Heuristics algorithms are a type of problem-solving method that uses intuition and experience-based 
knowledge to find a solution. Heuristics algorithms are used for various problems, including resource 
allocation, load balancing, and quality of service (QoS) management. One study that focuses on 
heuristics algorithms for QoS management in cloud computing is [24]. The algorithm uses an 
adaptive mutation strategy to balance the trade-off between resource utilization and service quality. 
Another study focuses on heuristics algorithms for cloud computing [25]. The authors proposed an 
algorithm which is a hybrid heuristic that combines the GA and PSO to allocate resources in cloud 
computing. The algorithm uses an adaptive mutation strategy to balance the trade-off between 
resource utilization and service quality. Heuristics algorithms are mostly used in cloud computing for 
the solution of different problems, including load balancing, and QoS management. The studies 
discussed in this review show that heuristics algorithms can effectively optimize resource utilization 
and service quality in cloud computing. Heuristics algorithms are problem-solving methods that use 
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intuition and experience-based knowledge to find solutions, making them well-suited to the dynamic 
and complex environment of cloud computing. One of the earliest studies that focuses on heuristics 
algorithms for cloud computing [26-28]. The algorithm uses the adaptive mutation strategy to balance 
the trade-off between resource utilization and service quality. Since then, many researchers have 
explored the use of heuristics algorithms in cloud computing, including load balancing and QoS 
management. For example [29, 30], the authors proposed an algorithm called a hybrid heuristic that 
combines the PSO and GA optimization to allocate resources in the field of cloud computing. In these 
years, the rallying on using heuristics algorithms in cloud computing to handle big data has increased. 
For example [31, 32], the authors proposed a heuristics algorithm for big data resource allocation in 
cloud computing that handle both computational resources and network resources. These algorithms 
used an adaptive mutation strategy to balance the trade-off between resource utilization and service 
quality [33]. With the increasing demand for cloud computing to handle big data, the usage of 
heuristics algorithms in the field of cloud computing is expected to continue to grow [34].  
 
2.2 META-HEURISTICS ALGORITHMS 
Meta-heuristics algorithms are a class of optimization algorithms that are commonly uses in the field 
of cloud computing to solve the problem of resource allocation and management. Meta-heuristics 
algorithms are flexible and scalable, making them well-suited to the dynamic and complex 
environment of cloud computing. One of the earliest studies that focuses on meta-heuristics 
algorithms for cloud computing [34-36]. One of the researchers proposed an algorithm called meta-
heuristics for better allocation of all concerned resources. The algorithm combines the simulated 
annealing and PSO for better service quality and utilization of the resources. Results shows the 
performance of meta-heuristic algorithm is improving in term of utilization of the resources and 
service quality. The researcher proposes a hybrid meta-heuristics algorithm that combines the GA 
and optimization of the ant colony for allotment of the cloud computing resources. The algorithm 
considers the QoS and utilization of the resources, The results depicts that the proposed algorithm 
performance is improved as per another algorithm.  
In this era, task scheduling techniques have become increasingly important in cloud computing. As 
cloud computing continues to evolve and become an integral part of many businesses, research on 
task scheduling techniques has grown. In this review, we will discuss the major advances in task 
scheduling techniques from 2010 to 2022 and their impact on cloud computing. In 2010, research on 
task scheduling techniques focused on improving the output of existing systems. Some researchers 
suggested methods for task scheduling that were based on the utilization of multiple cores and grid 
computing. These techniques were able to upgrade the performance of existing techniques by 
optimizing the utilization of resources and improving the scalability of the system. In 2012, research 
began to shift towards developing new techniques for task scheduling that could better utilize the 
cloud computing environment. This involved developing techniques such as resource virtualization, 
dynamic resource allocation, and multi-objective optimization. These techniques allowed cloud 
computing systems to better utilize the available resources and achieve higher levels of scalability 
[37]. In 2014, research began to focus on developing techniques that could improve the security of 
cloud computing systems. This involved developing techniques such as authentication and 
authorization management, secure scheduling of the tasks, and secure allocation of the resources. 
These techniques allowed cloud computing systems to better protect their data from malicious 
attackers and better manage the access of users to resources [38]. In 2016, research began to focus 
on developing techniques that could improve the QoS of cloud computing systems. This included 
developing techniques for QoS-based task scheduling, adaptive allocation of the resources, and 
online scheduling of the tasks. These techniques allowed cloud computing systems for better 
prioritize tasks based on their importance and to dynamically adjust the resources allocated to tasks 
based on their current demands [39]. In 2018, research began to focus on developing techniques that 
would allow cloud computing systems to better manage large-scale data processing. This included 
developing techniques such as graph-based scheduling, machine learning-based scheduling, and 
distributed scheduling. These techniques allowed cloud computing systems to efficiently process 
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large amounts of data and to make good use of their available resources [39]. In 2020, research began 
to focus on developing techniques that would allow cloud computing systems to better manage their 
workloads. This included developing techniques such as self-adaptive scheduling, predictive 
scheduling, and application-level scheduling. These techniques allowed cloud computing systems to 
better predict the demands of their workloads and to automatically adjust the resources allocated to 
them to maximize efficiency. In 2022, research is focusing on developing techniques that could better 
manage the interactions between cloud computing systems and their users. 
This includes developing techniques such as user-level scheduling, resource-level scheduling, and 
user-oriented scheduling. These techniques allow cloud computing to understand the needs of users 
and to allocate resources more efficiently [85]. 
Overall, research on task scheduling techniques has greatly improved the performance level of cloud 
computing over the past decade. These techniques have enabled cloud computing for better usage of 
its resources, improve its security, and provide better QoS for its users. As cloud computing continues 
to evolve, research on task scheduling techniques will continue to remain an important area of 
research. The latest techniques are listed in Table 1. 

Table 1: Summary of the Some Latest Techniques 
 

Ref# Improvements Stanchness Flaws 

[8] 
Improves makespan. 

Adaptive probability of 
crossover and mutation is 
Introduced. 

Load is imbalanced 

[27] Reduces probability of failure 
and completion time. 

It has multi-objective 
optimization. 

Converges pre-maturely Load 
balancing not considered. 

[40] Improves makespan and 
resource utilization. 

It has a Greedy Strategy to 
update vectors. The 
roulette wheel is used as a 
selection operator. 

Assessed on a small dataset. 

[41] Improves load balancing. 
The share of each VM is 
calculated based on the 
power and size of jobs. 

Low number of jobs. 

[19] Improves makespan. Tournament selection 
operation of GA is used. 

Not compared with other 
meta-heuristics. 
VM Load balancing is 
balanced. 

[42] Reduces makespan. Fast Convergence. 
Trapped able in local-minima. 

[43] Provides load balancing and 
reduces makespan. 

Two conflicting objectives 
are combined in a relation 
to define fitness as 
minimization function. 

High probability of mutation 
which may lead to pre-mature 
convergence. 

[44] 
Improves makespan, resource 
utilization and 
Convergence. 

Velocity in PSO is updated 
using Differential 
Evolution 
Algorithm. 

Not evaluated on any big 
dataset. 

[45] Improves time and cost of 
execution. 

An archive of dominating 
and non-dominating 
particles is maintained. 

Fittest particle being chosen 
does not meet both objects 
because its fitness function is 
not unbiased. 
Exploration ability is limited 
owing to fittest range 
depending on multi-objective. 

[17] Reduce execution time of jobs. 

LCFP and SCFP are used 
parallel to randomization 
for population 
Initialization. 

Not considered load 
balancing in the objective 
function. 
Evaluated on a very small 
dataset. 

 
2.3 DATASET 
Two types of datasets we use in our experiments. 

2.3.1 SYNTHETIC DATASET 
Synthetic test dataset is a dataset created by computer algorithms or programs. The details of the dataset are 
shown in Table 2. The data can be generated from real-world data to represent the characteristics of the 
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existing dataset. Synthetic test datasets are useful for large-scale experiments or for situations when real-
world data is not available. Four classes in this dataset are include that are as follow: 
Class 0: Customers with high income and low  spending   
Class 1: Customers with low income and high spending      
Class 2: Customers with high income and high spending      
Class 3: Customers with low income and low spending   

Table 2: Synthetic Dataset Jobs 
No Size 
1. 34304 
2. 37849 
3. 36347 
4. 30933 
5. 34976 
6. 38501 
7. 37059 
8. 36504 
9. 29606 

10. 34944 

 
 

2.3.2 REALISTIC DATASET 
A realistic dataset for scheduling of the task would add-up information about the tasks, like, name of the task, 
duration of the task, dependencies of the task, task priority, task resources needed, task due date, and task 
completion status. It would also include information about the resources available for completing the tasks, 
such as: resource name, resource availability, resource cost, resource location, and resource type. The dataset 
should also include information about the environment in which the tasks will be completed, such as: the 
current time, the location of the tasks, the current temperature and humidity, and any other environmental 
factors that may affect the completion of the tasks. Finally, the dataset should include information about the 
people assigned to the tasks, such as: person name, person availability, person skill set, and person work 
preferences. The details of the dataset are shown in Table 3. 

Table 3: Realistic Dataset 

No Size 
1. 83000 
2. 95000 
3. 91000 
4. 81000 
5. 27500 
6. 49000 
7. 103000 
8. 95000 
9. 47000 

10. 71000 

This article defines the exiting problem and later on its improved solution. The data set is given below with 
required details. The improved solution is presented for efficient task scheduling. The motive of selecting 
logical reasoning and algorithms is to improve the load balancing and makespan while enhancement of speed 
convergence of optimization algorithm. Merging of meta-heuristic and heuristic is for improved task 
scheduling.  

3 EXPERIMENTS AND RESULTS 
At first, the experiment to establish the mutation rate of both genetic algorithms is shown. The performance 
of both algorithms on synthetic and realistic datasets is then shown, along with the relevant commentary. 
Experiments show the duration and resource use of both strategies. Because the batched sizes in both datasets 
varied, numerous graphs are created for each batched size. In graphs, the average of all batched for the 
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performance indicators is provided individually as well. It is also indicated if the findings of studied 
methodologies have improved or declined. On the GoCJ and Synthetic datasets, the makespan of BGA is 
evaluated, however in the synthetic dataset, all categories, namely Normal as well left, right and uniform 
workload, are used in experiments. Figure depicts the makespan using the GoCJ dataset on batch sizes ranging 
from 100-550, with a 50-percentage difference in batched sizes. In most situations, BGA has obtained a 
shorter makespan. At batch sizes of 100 & 150, both algorithms are almost identical, however in additional 
batched sizes, BGA technique outperforms MGGS, ETA-GA, DSOS, and RALBA. The ETA-GA does not 
have a decent makespan as batched size increases, and its results has worsened on batches of more than 300. 
Figure 3-5 show the makespan using the GoCJ dataset on batched sized 600-1000. On big batch sizes, the 
ETA-GA dropped even further. The BGA has outperformed all benchmark approaches in terms of makespan. 
MGGS takes a long time on high batch sizes and improves over time, but BGA still outlasts MGGS. Figure 
1 depicts the behavior of the GoCJ in terms of makespan. BGA outperformed RALBA, ETA-GA, DSOS, and 
MGGS in terms of average makespan by 33.1, 65.5, 40.4, and 1%, respectively. 

 
Figure 1: Makespan on GoCJ 100 to 550 

 
Figure 2: Makespan on GoCJ 600 to 1000 
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Figure 3: Average Makespan on GoCJ 

It is calculated for altogether of synthetic datasets with batched sizes ranging from 100-1000 and a difference 
of hundred in batched sizes. Figure 6-9 show the results on left-skewed dataset, makespan is usually superior 
to other approaches. RALBA has a superior makespan for batch sizes of 100 & 1000, whereas BGA has a 
better makespan overall. On average, the BGA outperformed the DSOS, RALBA, MGGS, and ETA-GA by 
27.3, 71.9, 40.5 and 4.6%, correspondingly. 
 

 
Figure 4: Makespan on Normal 

 
Figure 5: Average Makespan on Normal 
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Figure 6: Average Makespan on Normal 

The makespan is calculated for altogether of synthetic datasets with batched sizes ranging from 100-1000 and 
a difference of hundred in batched sizes. Figure 9 depicts the study of makespan on makespan on the left-skewed 
dataset, is usually superior to other approaches. RALBA has a superior makespan for batch sizes of 100 & 1000, 
whereas BGA has a better makespan overall. The graph depicts the regular of all batched sizes. The algorithm 
outperformed the DSOS, RALBA, MGGS, and ETA-GA by 27.3, 71.9, 40.5 and 4.6%, correspondingly. Figure 
10 depicts the makespan analysis on a right-skewed dataset. 

 
Figure 7: Makespan on Uniform Dataset 

 

4.1 ARUR 
The ARUR are a metric used to calculate resources consumption. BGA's improvement is evaluated first on both 
datasets (GoCJ and Synthetic). Figure 7 showing the ARUR of proposed and other approaches on the both 
dataset for batched sizes ranging from 100 to 550, with a batch size alteration of 50. On batch sizes 100 and 
200, RALBA has a decent ARUR, however BGA excels on larger batched sizes. Figure 11 showing the ARUR 
analysis on the GoCJ dataset with batch sizes ranging from 600 to 1000. Figure 11 shows that BGA improves 
ARUR by 30, 80.4, 83.1, and 0.5% when compared to RALBA, ETA-GA, DSOS, and MGGS. On the GoCJ 
dataset, the BGA offers adequate load balancing for high batch sizes. 

 
Figure 8: ARUR on GoCJ 100 to 550 
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The examination on a left-skewed dataset for ARUR demonstrates that BGA increases resource consumption 
considerably on high batch sizes. Below figures shows the ARUR for batched sizes 100 - 1000, whereas, it is 
clear that BGA outperforms RALBA, ETA-GA, DSOS, and MGGS in terms of ARUR by 15.2, 77, 60.6, and 
5.4%, respectively. 

Figures 11 and 12 show the behaviour of BGA and further approaches on a homogenous datasets. BGA 
improves across all batched sizes. In comparison to DSOS, ETA-GA, MGGS, and RALBA, the percentage of 
improvement in makespan is 19.2, 71.9, 42.1, and 6.7%, respectively. 
 

 
Figure 9: ARUR on GoCJ 600 to 1000 
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Figure 10: Average of ARUR on GoCJ 

 
Figure 11: ARUR on Left Skewed 

 
Figure 12: Average of ARUR on Left Skewed 
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Figure 13: ARUR on Right Skewed 

 
Figure 14: Average of ARUR on Right Skewed 
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Figure 15: ARUR on Normal 

 
Figure 16: Average of ARUR on Normal 
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Figure 17: ARUR on Uniform 

 
Figure 18: Average of ARUR on Uniform 

 4.2 SGA 
The operation of the SGA has previously explained in literature review. SGA is useful when a meta-heuristic 
scheduler is necessary, the key focus here is improving GA's convergence speed. To employ this algorithm is 
previously covered in previous Section. Only meta-heuristics and SGA may be compared for convergence 
analysis. The fitness value is often compared on correctly applied approach improves through iterations. 
Because the provided approach is independent, and the demonstration of fitness value differs from that of 
previous methods. As a result, the approaches cannot be associated in terms of fitness. SGA's fitness function 
is intended to enhance load balance. The primary goal of SGA is to accelerate GA convergence. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 21: Results Graphs: (a) ARUR and Makespan of GoCJ, (b) ARUR and Makespan on Left 
Skewed (c) Makespan and ARUR on Right Skewed, (d) Makespan and ARUR on Normal, (e) Results of 

Uniform 

A.  Makespan 
Figures 26-35 demonstrations the makespan’s convergence rate across a batch of 500 jobs on the given dataset. 
It demonstrates that proposed algorithm has a faster convergence rate than ETA-GA and DSOS. Figure 24 
depicts the makespan on jobs of 1000 of the GoCJ. On huge batch sizes, ETA-GA meets relatively slowly, other 
side SGA is the quickest of all. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 22: Makaspan Results: (a) On Right Skewed of 500 Jobs, (b) on Right Skewed of 500 Jobs, (c) on 
Normal of 500 Jobs, (d) on Normal of 500 Jobs, (e) on Uniform of 500 Jobs, (f) on Uniform of 500 Jobs 

B. ARUR 
Figures 36-45 depict ARUR analysis on GoCJ datasets for batches of 500 - 1000, respectively. SGA outperforms 
ARUR considerably. SGA converges quicker than other approaches on typical datasets for batches of 500 and 
100, as illustrated in Figures. SGA beats ARUR on the even dataset at batched size 500, however DSOS and ETA-
GA are quite close. The difference in ARUR value is substantial in batch size 1000, and the SGA converges 
quickly once more. Figures 39 demonstrate this. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

 
Figure 23: ARUR Results (a) On GoCJ of 500 Jobs, (b) On GoCJ of 500 Jobs (c) On Left Skewed of 500 
Jobs (d) On Left Skewed of 500 Jobs (e) On Right Skewed of 500 Jobs (f) On Right Skewed of 500 Jobs 

(g) On Normal of 500 Jobs (h) On Normal of 500 Jobs (i) On Uniform of 500 Jobs (j) On Uniform 
Dataset of 500 Jobs 

 
5.  SIGNIFICANCE AND NOVELTY OF PROPOSED WORK 
The significance of the proposed work lies in its comprehensive exploration of task scheduling optimization, the 
introduction of a genetically based algorithm, the emphasis on meta-heuristic approaches, and the evaluation 
against existing techniques. The focus on QoS criteria and the use of diverse datasets contribute to the practical 
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relevance and novelty of the research. The proposed work holds significant importance and novelty in the field 
of cloud computing for several reasons: 

5.1 OPTIMIZATION OF TASK SCHEDULING 
The work addresses a crucial challenge in cloud computing, specifically the optimization of task scheduling. 
Efficiently allocating workloads to virtual resources is a fundamental concern due to the diversity of professions 
and their unique resource requirements. 
 
5.2 HEURISTIC AND META-HEURISTIC SCHEDULERS 
The study explores the use of heuristic and meta-heuristic schedulers for mapping independent jobs. This is 
essential given the variety of alternative mappings required to cater to different professions and resource needs. 

 

5.3 GENETICALLY BASED ALGORITHM 
The introduction of a genetically based algorithm adds novelty to the research. This algorithm aims to enhance 
both makespan and resource consumption, indicating a holistic approach to task scheduling optimization. 

5.4 ALGORITHM COMPARISON AND EVALUATION 
The proposed work compares the genetically based algorithm with the SGA (second algorithm) and several 
existing heuristic techniques. This comparative analysis provides insights into the strengths and weaknesses of 
different scheduling strategies. 

5.5 FOCUS ON CONVERGENCE SPEED 
The consideration of convergence speed in the SGA highlights a nuanced approach to algorithm design. This is 
crucial in real-world applications where the efficiency of scheduling algorithms can significantly impact system 
performance. 

5.6 META-HEURISTIC ADOPTION EMPHASIS 
The work strongly emphasizes the importance of adopting meta-heuristic approaches. Meta-heuristics, with their 
ability to explore a vast solution space, are recognized as valuable tools for addressing the complexities of cloud 
task scheduling. 

5.7 QOS CRITERIA 
The thesis concentrates on two critical Quality of Service (QoS) criteria, namely makespan and resources used. 
This focus on QoS criteria is essential for defining optimal mappings and ensuring that the proposed scheduling 
strategies align with performance objectives. 

5.8 SYNTHETIC AND REALISTIC DATASETS 
To validate the functionality of the proposed methodologies, the use of both synthetic and realistic datasets 
enhances the robustness and applicability of the research findings to practical scenarios. 

6.  CONCLUSION AND FUTURE WORK  
In the field of  cloud computing, the problem of task scheduling necessitates the effective plotting of workloads 
to virtual resources. Because of diversity of professions and needed resources, there are several alternative 
mappings. To map independent jobs, heuristic and meta-heuristic schedulers are used. The meta-heuristic has the 
capacity to search the vast universe of promising results. The genetically based algorithm introduced in study in 
order to increase the makespan and needed resource consumption. The second algorithm (SGA), is concerned with 
convergence speed. The strategies given are compared to several current both heuristic techniques. Other genetic 
optimization based approaches are assessed in conjunction with the described methodologies as well. To learn 
how the provided methodologies function, synthetic and realistic datasets are used. 
• For optimum scheduling, heuristic, meta-heuristic, and hybrid approaches are thoroughly studied. 
• The importance of meta-heuristic adoption is strongly emphasised. 
• The effectiveness of a genetically based evolutionary strategy in meta-heuristics is demonstrated. 
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• This thesis focuses on two of the most important QoS criteria, namely makespan and resources used, in order 
to define optimal mapping. 
Future work in the field of cloud computing task scheduling could build upon the current research by addressing 
the following areas: 
• Investigate the potential of hybrid algorithms that combine the strengths of heuristic, meta-heuristic, and 
genetically based approaches. This exploration could lead to more robust and adaptable scheduling strategies. 
• Extend the research to handle dynamic workloads in real-time. Developing algorithms that can adapt to 
changing workload conditions and resource availability would enhance the practical applicability of the scheduling 
system. 
• Integrate energy efficiency as a key criterion for task scheduling. Future work could focus on algorithms that 
not only optimize makespan and resource usage but also minimize energy consumption, contributing to 
environmentally sustainable computing. 
• Explore the integration of machine learning techniques to predict workload patterns and resource demands. This 
could enable more proactive and anticipatory scheduling strategies, improving overall system efficiency. 
• Conduct extensive scalability testing to evaluate the performance of the proposed algorithms in handling large-
scale cloud environments. This would ensure that the scheduling strategies remain effective as the scale of cloud 
systems continues to grow. 
• Implement the proposed algorithms in a real-world cloud computing environment to assess their practical 
feasibility and performance. This could involve collaboration with industry partners to deploy and evaluate the 
algorithms in operational cloud platforms. 
• Investigate methods for allowing users to customize the scheduling algorithms based on their specific 
requirements and priorities. Providing a level of customization could enhance the adaptability of the system to 
diverse user needs. 
• Integrate security and privacy considerations into the scheduling algorithms. Future work could explore 
methods for ensuring secure and private task scheduling, especially in multi-tenant cloud environments. 
• Explore the compatibility of the proposed algorithms with different cloud platforms and architectures. Ensuring 
cross-platform adaptability would make the scheduling strategies applicable in a variety of cloud computing 
environments. 
• Establish a continuous benchmarking process to monitor the performance of scheduling algorithms over time. 
This would involve updating algorithms based on evolving workload patterns and technological advancements. 
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